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Preface

Industrial-strength software analysis and verification has advanced in recent
years through the introduction of model checking, automated and interactive
theorem proving, and static analysis techniques, as well as correctness by de-
sign, correctness by contract, and model-driven development. However, many
techniques are working under restrictive assumptions that are invalidated by
complex embedded systems software such as operating system kernels, low-level
device drivers, or micro-controller code.

The aim of SSV workshop series is to bring together researchers and devel-
opers from both academia and industry who are facing real software and real
problems with the goal of finding real, applicable solutions. It has always been
the goal of SSV program committees to let “real problem” really mean real
problem (in contrast to real academic problem).

The 6th SSV workshop was held on August 26 in Nijmegen in the Nether-
lands. The workshop was co-located with the second conference on Interactive
Theorem Proving (ITP 2011), which took place from 22–25 August at the same
place.

The program chairs and organization committee of SSV 2011 have been

Jörg Brauer, RWTH Aachen University, Germany
Marco Roveri, FBK-irst, Italy
Hendrik Tews, TU Dresden, Germany

The SSV program chairs gratefully acknowledge the sponsorship of National
ICT Australia Ltd (NICTA), Australia’s Information and Communications Tech-
nology Research Centre of Excellence, and of the Ultra high speed mobile in-
formation and communication (UMIC) cluster of excellence at RWTH Aachen
University in Germany.

August 9, 2011 Jörg Brauer, Marco Roveri and Hendrik Tews
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Antti Jääskeläinen, Mika Katara, Shmuel Katz, and Heikki
Virtanen

A Tool for the Certification of Sequential Function Chart based System
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Jan Olaf Blech

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



Refinement-based CFG Reconstruction from
Executables⋆,⋆⋆

Sébastien Bardin, Philippe Herrmann, and Franck Védrine

CEA, LIST,
Gif-sur-Yvette CEDEX, 91191 France

first.name@cea.fr

Abstract. We address the issue of recovering a both safe and precise approxima-
tion of the Control Flow Graph (CFG) of a program given as an executable file.
The problem is tackled in an original way, with a refinement-based static analy-
sis working over finite sets of constant values. Requirementpropagation allows
the analysis to automatically adjust the domain precision only where it is needed,
resulting in precise CFG recovery at moderate cost. First experiments, including
an industrial case study, show that the method outperforms standard analyses in
terms of precision, efficiency or robustness.

Motivation. Automatic analysis of programs from their executable files has many po-
tential applications in safety and security, for example: automatic analysis of mobile
code and malware, security testing or worst case execution time estimation. We address
the problem of (safe) CFG reconstruction, i.e. constructing a both safe and precise ap-
proximation of the Control Flow Graph (CFG) of a program given as an executable
file. CFG reconstruction is a cornerstone of safe binary-level analysis: if the recovery
is unsafe, subsequent analyses will be unsafe too; if it is too rough, they will be blurred
by too many unfeasible branches and instructions.

Fig. 1. CFG reconstruction from an executable file

Challenges.Such an approximation is difficult to obtain mainly because of dynamic
jumps, i.e. jump instructions whose target expression is resolved at run-time and may

⋆ Work partially funded by ANR (grants ANR-05-RNTL-02606 andANR-08-SEGI-006).
⋆⋆ The material presented here is taken from a preliminary version of the VMCAI’11 paper [3].
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vary from one execution to the other. Dynamic jumps are very sensitive instructions
and a small loss in precision on target expressions may affect dramatically the quality
of the subsequent analysis, leading to vicious circles between value analysis and CFG
reconstruction. Moreover, there is no reason why all valid targets of a dynamic jump
should follow a nice regular pattern. Indeed they are just addresses in the executable
code, often arbitrarily assigned by a compiler. Hence any analysis based on popular
domains (i.e. convex domains possibly enhanced with congruence information) will
introduce many false targets. For example, consider an instructioncgoto(x) with x
∈ {1355, 1356, 2126}: such an analysis cannot recover better thanx ∈ [1355..2126],
reporting 99% of false targets.

Note that, unfortunately, dynamic jumps are ubiquitous in native code programs:
they are introduced at compile-time either for efficiency (switch in C) or by necessity
(return statements, function pointers in C, virtual methods in C++, etc.).

Related approaches.Industrial tools like IDA PRO [10] or AI T [9] usually rely on
linear sweep decoding (brute force decoding of all code addresses) or recursive traver-
sal (recursive decoding until a dynamic jump is encountered), enhanced with limited
constant propagation, pattern matching techniques based on the knowledge of the com-
piling chain process and user annotations. These techniques are unsafe on general pro-
grams, missing many legal targets and branches. The only safe techniques are those
by Repset al. [4, 5] - based mainly on stride intervals propagation, and byKinder and
Veith [7, 8] - based on k-set (sets of bounded cardinality) propagation. Experiments re-
ported by the authors show that while each approach performsmuch better than current
industrial tools, both techniques still recover many falsetargets. Especially, stride inter-
vals cannot capture precisely sets of jump targets, and k-sets are too sensitive to their
cardinality bound, potentially leading to either imprecise or expensive analyses.

Our approach. We propose an original refinement-based procedure to solve CFG re-
construction [3]. The procedure is built on two main steps: aforward k-set propagation
with local cardinality bounds (ranging from0 up to a given parameterKmax), and a
refinement step controlling these cardinality bounds.

The forward propagation is mostly a standard one, enhanced with a few original
mechanisms: (1) abstract values are downcast according to local cardinality bounds,
permitting to lose information and increase efficiency; (2)⊤ values (i.e. abstract values
denoting the whole domain) are tagged with additional information recording their ori-
gin (for example⊤〈1,3,12〉 denotes the abstraction to⊤ of the k-set{1, 3, 12}), allowing
to pinpoint theinitial sources of precision loss (ispl) and give clue for correction (cf. re-
finement); (3) alias, jump targets and branches that have been fired during propagation
are recorded into ajournal (cf. refinement).

Refinement is lazy and on-demand. When a jump expression evaluates to⊤, the
refinement mechanism takes place, trying to find out ispls responsible for the violation
(guided by backward data dependencies and journal information) and to correct them
by locally improving the domain precisions (using⊤-flags).

Results.From a theoretical point of view, the procedure is sound and runs in polynomial-
time. Moreover it is as precise as standard k-set propagation on a class of non-trivial
programs, including dynamic jumps and alias [3]. From a practical point of view, the
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procedure has been implemented and evaluated on an industrial safety-critical program
(32 kloc) and on small handcrafted programs. It appears to bereasonably efficient (tak-
ing less than 5 minutes for the industrial case study), very precise (only7% of false
targets, beating standard approaches based on convex domains by several orders of
magnitude), and very robust: the procedure does need an initial parameter, but its exact
value does not seem to matter.
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VeriFast: a Powerful, Sound, Predictable, Fast
Verifier for C and Java

Bart Jacobs

DistriNet Research Group
Department of Computer Science, Katholieke Universiteit Leuven, Belgium

bart.jacobs@cs.kuleuven.be

Abstract. VeriFast [6, 2, 3] is a verifier for single-threaded and multi-
threaded C and Java programs annotated with preconditions and post-
conditions written in separation logic. To enable rich specifications, the
programmer may define inductive datatypes, primitive recursive pure
functions over these datatypes, and abstract separation logic predicates.
To enable verification of these rich specifications, the programmer may
write lemma functions, i.e., functions that serve only as proofs that their
precondition implies their postcondition. The verifier checks that lemma
functions terminate and do not have side-effects. Verification proceeds by
symbolic execution, where the heap is represented as a separation logic
formula. Since neither VeriFast itself nor the underlying SMT solver do
any significant search, verification time is predictable and low. The Ver-
iFast IDE allows users to step through failed symbolic execution paths,
and to inspect the symbolic state at each step. This yields a relatively
comfortable interactive annotation authoring experience. We are cur-
rently using VeriFast to verify fine-grained concurrent data structures
[1], unloadable kernel modules [5], and JavaCard programs [4].
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Adaptable Value-Set Analysis for
Low-Level Code

Jörg Brauer1?, René Rydhof Hansen2, Stefan Kowalewski1,
Kim G. Larsen2 and Mads Chr. Olesen2

1 Embedded Software Laboratory, RWTH Aachen University, Germany
2 Department of Computer Science, Aalborg University, Denmark

Abstract. This paper presents a framework for binary code analysis
that uses only SAT-based algorithms. Within the framework, incremental
SAT solving is used to perform a form of weakly relational value-set
analysis in a novel way, connecting the expressiveness of the value sets to
computational complexity. Another key feature of our framework is that it
translates the semantics of binary code into an intermediate representation.
This allows for a straightforward translation of the program semantics into
Boolean logic and eases the implementation efforts, too. We show that
leveraging the efficiency of contemporary SAT solvers allows us to prove
interesting properties about medium-sized microcontroller programs.

1 Introduction

Model checking and abstract interpretation have long been considered as formal
verification techniques that are diametrically opposed. In model checking, the
behavior of a system is formally specified with a model. All paths through
the system are then exhaustively checked against its requirements, which are
classically specified in some temporal logic. Of course, the detailed nature of
the requirements entails that the program is simulated in a fine-grained fashion,
sometimes down to the level of individual bits. Since the complexity of this style
of reasoning naturally leads to state explosion, there has thus been much interest
in representing states symbolically so as to represent states that share some
commonality without duplicating their commonality. As one instance, Boolean
formulae have successfully been applied to this task [10].

By way of comparison, the key idea in abstract interpretation [14] is to
abstract away from the detailed nature of states, and rather represent sets
of concrete states using geometric concepts such as affine [19] or polyhedral
spaces [15]. A program analyzer then operates over classes of states that are
related in some sense — for example, sets of states that are contained by the
shape of a convex polyhedron — rather than individual states. If the number of
classes is small, then all paths through the program can be examined without
incurring the problems of state explosion. Further, when carefully constructed,
the classes of states can preserve sufficient information to prove correctness of

? The work of Jörg Brauer was carried out while being on leave at Aalborg University.
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0x42 : ANDI R1 15

0x43 : ADD R0 R1

0x44 : LSL R0

0x45 : BRCS label

0x46 : INC R0

Fig. 1. The target of the conditional branch BRCS label depends on the carry
flag after the left-shift; this value, in turn, depends on R0 and R1 on input.

the system. However, sometimes much detail is lost when working with abstract
classes so that the technique cannot infer useful results; they are too imprecise.
This is because the approach critically depends on the expressiveness of the
classes and the class transformers chosen to model the instructions that arise
in a program. It is thus desirable to express the class transformers, also called
transfer functions, as accurately as possible. The difficulty of doing so, however,
necessitates automation [24,30], especially if the programs/operations are low-
level and defined over finite bit-vectors [5,6]. Recent research has demonstrated
that automatic abstraction on top of sophisticated decision procedures provides
a way to tame this complexity for low-level code [4,5,6,20,21,30]. Using these
approaches, a decision procedure (such as a SAT or SMT solver) is invoked on a
relational representation of the semantics of the program in order to automatically
compute the desired abstraction. Since representing the concrete semantics as
a Boolean formula has become a standard technique in program analysis (it
is colloquially also referred to as bit-blasting), owing much to the advances of
bounded model checking [11], such encodings can straightforwardly be derived.

1.1 Value-Set Analysis using SAT

This paper studies the algorithm of Barrett and King [4, Fig. 3], who showed
how incremental SAT solving can be used to converge onto the non-relational
value sets of a bit-vector characterized by a Boolean formula. When applying
their technique to assembly code, however, the non-relational representation
may be too imprecise. This is because blocks in assembly code frequently end in
a conditional jump. This instruction, paired with the preceding ones, encodes
certain constraints. For example, the 8-bit AVR code in Fig. 1 depends on two
inputs R0 and R1, which are used to mutate R0 and R1. Control is transfered
to label if the instruction LSL R0 (logical left-shift of R0) sets the carry flag;
otherwise, control proceeds with the increment located at address 0x46.

To precisely approximate the value sets of R0 at the entries and exits of
each block, it is thus necessary to take the relation between the registers and
the carry flag into account. For the values of R0 in instruction 0x46, e.g., one
has to distinguish those inputs to the program which cause the carry flag to
be set from those which lead to a cleared carry flag. To capture this relation,
we argue that it is promising to consider a bit-vector representing not only
R0, but simultaneously the carry flag (or any other status flag the branching
instruction ultimately depends on). Suppose the initial block in Fig. 1 starting at
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address 0x42 is described by a Boolean formula ϕ. Our description relies on the
convention that input bit-vectors are denoted r0 and r1, respectively, whereas the
outputs are primed. Further, each bit-vector r takes the form r = 〈r[0], . . . , r[7]〉.
Additionally, the carry flag on output is represented by a single propositional
variable c′. Rather than projecting ϕ onto r0′ for value-set analysis (VSA), one
can likewise project ϕ onto the extended bit-vector 〈r0′[0], . . . , r0′[7], c′〉. By
decomposing the resulting value sets into those with c′ cleared and those with c′

set, we have reconstructed a 9-bit value-set representation for an 8-bit register
that takes some relational information into account; it is thus weakly relational.
The first contribution of this paper is a discussion and experimental evaluation
of this technique, where status flags guide the extension of bit-vectors for VSA.

1.2 Intermediate Representation for Assembly Code

Implementing SAT-based program analyzers that operate on low-level repre-
sentations requires significant effort because Boolean formulae for the entire
instruction set of the hardware have to be provided. Although doing so is merely
an engineering task, this situation is rather unsatisfactory if the program analyzer
shall support different target platforms. Indeed, the instruction set of different
hardware platforms often varies only in minor details, yet their sheer number
makes the implementation (and testing, of course) complex. To overcome this
complexity, we propose to decompose each instruction into an intermediate repre-
sentation (IR) [3,9], where the instruction is characterized as an atomic sequence
of basic operations. Each of the basic operations can then straightforwardly be
translated into Boolean logic, thereby providing a representation that depends
on few primitive operations only. We further elaborate on several characteristics
of the IR and discuss our experiences with connecting VSA with Metamoc [17],
a tool that performs worst-case execution time analysis using timed automata.
In Metamoc, the system abstraction is generated on top of a static VSA.

1.3 Structure of the Presentation

To make this paper self-contained, Sect. 2 recapitulates the algorithm of Barrett
and King [4]. The paper then builds towards the above mentioned contributions
using a worked example in Sect. 3. The key ingredients of our framework are:

1. translate a given binary program into our IR,
2. express the semantics of the translated program in Boolean logic,
3. compute projections onto the relevant bit-vectors, and perform VSA using

SAT solving until a fixed point is reached.

Each of these steps for the example program in Fig. 1 is discussed in its own
subsection in Sect. 3. Then, Sect. 4 discusses an extension of the example to weak
relations between different registers, before Sect. 5 presents some experimental
evidence from our implementation. The paper concludes with a survey of related
work in Sect. 6 and a discussion in Sect. 7.
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2 Primer on Value-Set Analysis

The key idea of Barrett and King [4, Fig. 3] is to converge onto the value sets of
a register using a form of dichotomic binary search [12]. Let ϕ denote a Boolean
formula that characterizes a bit-vector r. In the first iteration, the algorithm
computes an over-approximation of the values of r by determining the least
and greatest values r1` and r1u of r subject to ϕ. These values are obtained by
repeatedly applying a SAT solver to ϕ in conjunction with blocking clauses. To
illustrate the principle, consider determining r1` . If the bit-vector r is w bits

wide, the unsigned value of r, denoted 〈〈r〉〉 =
∑w−1

i=0 2i · r[i], is in the range
0 ≤ 〈〈r〉〉 ≤ 2w − 1, and so is 〈〈r1`〉〉. The constraint 0 ≤ 〈〈r1`〉〉 ∧ 〈〈r1`〉〉 ≤ 2w − 1
can be expressed disjunctively as µ` ∨ µu where:

µ` = 0 ≤ 〈〈r1`〉〉 ≤ 2w−1 − 1 µu = 2w−1 ≤ 〈〈r1`〉〉 ≤ 2w − 1

To determine which of both disjuncts characterizes r1` , it is sufficient to test the
formula ∃r : ϕ ∧ ¬r[w − 1] for satisfiability. If satisfiable, then µ` is entailed by
r1` , and µu otherwise. This follows directly from the bit-vector representation of
unsigned integer values. Suppose that ∃r : ϕ ∧ r[w − 1] is satisfiable, and thus
0 ≤ 〈〈r1`〉〉 ≤ 2w−1 − 1. We proceed by decomposing this refined characterization
into a disjunction µ′` ∨ µ′u where

µ′` = 0 ≤ 〈〈r1`〉〉 ≤ 2w−2 − 1 µ′u = 2w−2 ≤ 〈〈r1`〉〉 ≤ 2w−1 − 1

as above, and testing ∃r : ϕ ∧ ¬r[w − 1] ∧ ¬r[w − 2] for satisfiability. Repeating
this step w times gives r1` exactly. We can likewise compute r1u and thus deduce:

∀r : ϕ ∧ (〈〈r1`〉〉 ≤ 〈〈r〉〉 ≤ 〈〈r1u〉〉)

The key idea of VSA is then to repeatedly apply this technique so as to alter-
natingly remove and add ranges from the initial interval [〈〈r1`〉〉, 〈〈r1u〉〉]. It does so
using alternating over- and under-approximation as follows. In the first iteration
of the algorithm, the value set then contains all values in the computed range,
i.e., V1 = {r1` , . . . , r1u}. In the second iteration, the algorithm infers an over-
approximate range of non-solutions and removes this range from V1. This gives an
under-approximation of the actual value set of r. To get this result, the algorithm
computes the least and greatest non-solutions r2` and r2u within the range V1.
The bounds are derived using dichotomic search based on ¬ϕ rather than ϕ.
An under-approximation of the value set of r is then obtained by eliminating
{r2` , . . . , r2u} from V1, i.e., V2 = V1 \ {r2` , . . . , r2u}. The under-approximation
V2 is extended by adding an over-approximate range of solutions to V2. The
algorithm thus proceeds by determining solutions r3` and r3u within the range
r2` , . . . , r

2
u. This turns the under-approximation V2 into an over-approximation

V3 = V2 ∪ {r3` , . . . , r3u}, again followed by under-approximation. After a finite
number k of iterations, no further solutions are found which are not contained in
Vk. The algorithm then terminates and Vk is the desired value set.
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3 Worked Example

The key idea of our approach is to first translate each instruction in a program
from a hardware-specific representation into an intermediate language. Liveness
analysis is then performed to eliminate redundant (dead) operations from the
IR. It turns out that liveness analysis is much more powerful in assembly code
analysis than in traditional domains due to side-effects. Many instructions have
side-effects, yet few of them actually influence the behavior of the program. The
elimination of dead operation is followed by a conversion of each block into static
single assignment (SSA) form [16]. The semantics of each block in the IR is
then expressed in the computational domain of Boolean formulae. To derive
over-approximations of the value sets of each register, we combine quantifier
elimination using SAT solving [8] with VSA [29].

3.1 Translating a Binary Program

Recall that assembly instructions typically have side-effects. The instruction ANDI

R1 15 from Fig. 1, for instance, computes the bit-wise and of register R1 with the
constant 15 and stores the result in R1 again. However, it also mutates some of
the status flags, which are located in register R95 (in case of the ATmega16). Our
IR makes these hidden side-effects explicit, which then allows us to represent large
parts of the instruction set using a small collection of building blocks. However,
this additional flexibility also implies that some hardware-related information has
to be included in the IR, most notably operand sizes and atomicity (instructions
are executed atomically, and thus cannot be interrupted by an interrupt service
routine). We tackle these two problems by representing a single instruction as an
uninterruptible sequence of basic operations, and by postfixing the respective
basic operation with one of the following operand-size identifiers:

Identifier Meaning Size Example

.b Bit 1 XOR.b R0:0 R0:1 R0:2

.B Byte 8 AND.B R0 R0 #15

.W Word 16 INC.W R1 R1

.DW Double Word 32 ADD.DW R0 R1 R2

In this encoding, the first operand is always the target, followed by a varying
number of source operands (e.g., bit-wise negation has a single source operand
whereas addition has two). The AVR instruction AND R0 #15 then translates into
AND.B R0 R0 #15, thus far ignoring the side-effects. The side-effects are given in
the instruction-set specification [1] by the following Boolean formula:

r95′[1]↔
∧7

i=0 ¬r0′[i] ∧ r95′[2]↔ r0′[7] ∧
¬r95′[3] ∧ r95′[4] ↔ r95′[2]⊕ r95′[3]
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Given the classical bit-wise operations, these side-effects are encoded (with some
simplifications applied and using an additional macro isZero) as:

AND.B R1 R1 #15; MOV.b R95:3 #0; MOV.b R95:2 R0:7;

MOV.b R95:4 R95:2; MOV.b R95:1 isZero(R0);

The other instructions can likewise be decomposed into such a sequence of building
blocks, and then be conjoined to give a sequence that describes the instructions
0x42 to 0x45 from Fig. 1 as follows (note that some auxiliary variables are
required to express the side-effects of ADD R0 R1):

0x42 : AND.B R1 R1 #15; MOV.b R95:3 #0; MOV.b R95:2 R1:7;

MOV.b R95:4 R95:2; MOV.b R95:1 isZero(R1);

0x43 : MOV.B F R0; ADD.B R0 R0 R1; MOV.b R95:1 isZero(R0);

MOV.b R95:2 R0:7; XOR.b R95:4 R95:2 R95:3; AND.b R95:0 F:7 R1:7;

NOT.b d R0:7; AND.b e R1:7 d; OR.b R95:0 R95:0 e;

AND.b e d F:7; OR.b R95:0 R95:0 e; AND.b e F:7 R1:7;
AND.b R95:3 e d; NOT.b f F:7; NOT.b g R1:7;

AND.b f f g; AND.b f f d; OR.b R95:3 R95:3 f;

0x44 : MOV.b R95:5 R0:3; MOV.b R95:0 R0:7; LSL.B R0 R0 #1;

MOV.b R95:2 R0:7; XOR.b R95:3 R95:0 R95:2; XOR.b R95:4 R95:2 R95:3;

MOV.b R95:1 isZero(R0);

0x45 : BRANCH (R95:0) label #0x46;

Clearly, the side-effects define the lengthy part of the semantics. Hence, before
translating the IR into a Boolean formula for VSA, we perform liveness anal-
ysis [26] and in order to eliminate redundant assignments, which do not have
any effect on the program execution. This technique typically simplifies the
programs — and thus the resulting Boolean formulae — significantly because
most side-effects do not influence any further program execution, and so does
liveness analysis for the given example:

0x42 : AND.B R1 R1 #15;

0x43 : ADD.B R0 R0 R1;

0x44 : MOV.b R95:0 R0:7; LSL.B R0 R0 #1;

0x45 : BRANCH (R95:0) label #0x46;

Indeed, similar reductions can be observed for all our benchmark programs. It is
thus meaningful with respect to tractability to decouple the explicit effects of an
instruction from its side-effects.

3.2 Bit-Blasting Blocks

Expressing the semantics of a block in Boolean logic has become a standard
technique in program analysis due to the rise in popularity of SAT-based bounded
model checkers [11]. To provide a formula that describes the semantics of the
simplified block, we first apply SSA conversion (which ensures that each variable
is assigned exactly once). We then have bit-vectors V = {r0, r1} on input
of the block, bit-vectors V ′ = {r0′, r1′, r95′} on output, and an additional
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intermediate bit-vector r0′′. The most sophisticated encoding is that of the ADD

instruction, which is encoded as a full adder with intermediate carry-bits c. Given
these bit-vectors, the instructions are translated into Boolean formulae is follows:

ϕ0x42 =
∧3

i=0(r1′[i]↔ r1[i]) ∧
∧7

i=4(¬r1′[i])

ϕ0x43 =
(
∧7

i=0 r0
′′[i]↔ r0[i]⊕ r1′[i]⊕ c[i]) ∧ ¬c[0]∧

(
∧6

i=0 c[i+ 1]↔ (r0[i] ∧ r1′[i]) ∨ (r0[i] ∧ c[i]) ∨ (r1′[i] ∧ c[i]))

ϕ0x44 = (r95′[0]↔ r0′′[7]) ∧ (
∧7

i=1 r0
′[i]↔ r0′′[i− 1]) ∧ ¬r0′[0]

Observe that instruction 0x45 does not alter any data, and is thus not included
in the above enumeration. Then, the conjoined formula

ϕ = ϕ0x42 ∧ ϕ0x43 ∧ ϕ0x44

describes how the block relates the inputs V to the outputs V ′ using some
intermediate variables (which are existentially quantified). In the remainder of
this example, we additionally assume that our analysis framework has inferred
that R0 is in the range of 110 to 120 on input of the program, and that ϕ has
been extended with this constraint.

3.3 Value-Set Analysis for Extended Bit-Vectors

The algorithm of Barrett and King [4, Fig. 3] computes the VSA of a bit-vector
v in unsigned or two’s complement representation as constraint by some Boolean
formula ψ. It does so by converging onto the value-sets of v using over- and
under-approximation. However, the drawback of their method is that it requires
vars(ψ) = v, i.e., ψ ranges only over the propositional variables in v. To apply
the method to the above formula ϕ and compute the value-sets of r0 ∈ V on
entry, e.g., it is thus necessary to eliminate all variables vars(ϕ)\r0 from ϕ using
existential quantifier elimination. Intuitively, this step removes all information
pertaining to the variables vars(ϕ) \ r0 from ϕ. In what follows, denote the
operation of projecting a Boolean formula ψ onto a bit-vector v ⊆ vars(ψ) by
πv(ψ). In our framework, we apply the SAT-based quantifier elimination scheme
by Brauer et al. [8], though other approaches [22] are equally applicable.

Projecting onto Extended Bit-Vectors As stated before, it is our desire
to reason about the values of register R0 on the entries of both successors of
instruction 0x45. These values correspond to the values of the bit-vector r0′.
Yet, we also need to take into account the relationship between r0′ and the carry
flag r95′[0]. We therefore treat o = r0′ : r95′[0], where : denotes concatenation,
as the target bit-vector for VSA, and project ϕ onto o. Then, πo(ϕ) describes a
Boolean relationship between r0′ and the carry-flag r95′[0].

Value-Set Analysis We finally apply the VSA to πo(ϕ) so as to compute the
unsigned values of R0 on entry of both successor blocks of 0x45. To express
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the unsigned value of a bit-vector v = 〈v[0], . . . ,v[n]〉, let 〈〈v〉〉 =
∑n−1

i=0 2i · v[i].
Since R0 is an 8-bit register, and the representing bit-vector is extended by the
carry-flag to give o, we clearly have 0 ≤ 〈〈o〉〉 ≤ 29− 1. Applying VSA then yields
the following value-sets:

〈〈o〉〉 ∈ { 220, 222, . . . , 252, 254,
256, 258, . . . , 268, 270}

Observe that the values in the range 28 ≤ 〈〈o〉〉 ≤ 29−1 reduced by 28 correspond
to those values for which the branch is taken. Likewise, the values of 〈〈o〉〉 in the
range 0 ≤ 〈〈o〉〉 ≤ 28 − 1 correspond to the values for which the branch is not
taken. Hence, the results of VSA can be interpreted as follows:

1. The value-set 〈〈r0′〉〉 ∈ {220, 222, . . . , 252, 254} is propagated into the succes-
sor block 0x46. This is because it is possible that the branch is not taken for
these values.

2. The value-set 〈〈r0′〉〉 ∈ {256, 258, . . . , 268, 270} is reduced by 256 so as to
eliminate the set carry-flag, which gives 〈〈r0′〉〉 ∈ {0, 2, . . . , 12, 14} as potential
values if the branch is taken.

In this example, the definition of the carry-flag is straightforward: the most
significant bit of R0 in instruction 0x44 is moved into the carry. This is clearly
not always the case. As an example, recall the lengthy definition of the effects
of ADD R0 R1 on the carry-flag in Sect. 2.1 (consisting of one negation, three
conjunctions and three disjunctions). By encoding these relations in a single
formula and projecting onto the carry-flag conjoined with the target register, our
analysis makes such relations explicit.

4 Weak Relations Between Registers

It is interesting to observe that the approach can likewise be applied to derive
relations between different bit-vectors which, in turn, represent different registers.
Suppose we apply the same strategy to the extended bit-vector o′ = r0′ : r0[7].
Applying VSA to o′ then yields results in the range 0 ≤ 〈〈o′〉〉 ≤ 29− 1. Following
from the encoding of unsigned integer values, the results exhibit which values r0′

can take for inputs such that either 0 ≤ 〈〈r0〉〉 ≤ 127 or 128 ≤ 〈〈r0〉〉 ≤ 255. If VSA
yields a value such that the most significant bit of o′ is set, then 〈o′[0], . . . ,o′[7]〉
is a value which is reachable if 〈〈r0〉〉 ≥ 128.

However, a more precise characterization of the relation between r0 and
r0′ can be obtained by applying VSA to o′′ = o′ : r0[6], which partitions
the values according to the inputs (i) 0 ≤ 63, (ii) 64 ≤ 127, (iii) 128 ≤ 191,
and (iv) 192 ≤ 255. Yet, the payoff for the increase in expressiveness is higher
computational complexity. In fact, the payoff is two-fold. First, the efficiency
of SAT-based quantifier elimination decreases as the number of propositional
variables to project onto increases. Second, the size of the resulting value-sets
increases, and thus the number of SAT calls to compute them.
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5 Experimental Evidence

We have implemented the techniques discussed in this paper in Java using the
Sat4J solver [23]. The experiments were performed with the expressed aim of
answering the following questions:

– How does the translation of the instructions into an IR affect the performance
of SAT-based value-set analysis? This is of interest since the decoupling of
the side-effects from the intended effect of the instruction allows for a more
effective liveness analysis than implemented in tools such as [mc]square [31].

– How does analyzing extended bit-vectors affect the overall performance
compared to the SAT-based analysis discussed in [29]. Their analysis recovers
weakly-relational information using alternating executions of forward and
backward analysis so as to capture the relation between, e.g., a register R0

and the carry-flag after a branching has been analyzed, whereas our analysis
tracks such information beforehand.

We have applied the analysis to various benchmark programs for the Intel Mcs-
51 microcontroller, which we have used before to evaluate the effectiveness of our
analyses [29, Sect. 4]. VSA is used to compute the target addresses of indirect
jumps, where bit-vectors are extended based on the status flags that trigger
conditional branching (like the carry-flag in the worked example). Decoupling the
instructions from the side-effects led to a reduction in size of the Boolean formulae
of at least 75%. Experimental results with respect to runtime requirements are
shown in Tab. 1. Compared to the analysis in [29], the runtime decreases by
at least 50% for the benchmarks, due to fewer VSA executions. The computed
value-sets are identical for this benchmark set.

Table 1. Experimental results for SAT-based VSA

Name LoC # instr. Runtime

Single Row Input 80 67 1.42s
Keypad 113 113 1.93s
Communication Link 111 164 1.49s
Task Scheduler 81 105 6.77s
Switch Case 82 166 8.09s
Emergency Stop 138 150 0.91s

To investigate the portability of our IR to other architectures, we have im-
plemented a compiler from ARM assembly to the sketched IR. We have done
so within the Metamoc [17] toolchain which already provides support for dis-
assembling ARM binaries and reconstructing some control flow. Furthermore,
Metamoc contains formal descriptions of instruction effects. We translated these
formal descriptions to the required IR format manually, requiring approximately
one day. Translating a different platform to the IR uncovered a few areas where we
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might beneficially extend our intermediate language: the ARM architecture exces-
sively uses conditional execution of instructions. In this situation, an instruction
is executed if some logical combination of bits evaluates to true; otherwise, the
instruction is simply skipped. Compilers for ARM use such constructs frequently
to simplify the control structure of programs, leading to fewer branches. Adding
support for such instruction features is fundamental to support different hard-
ware platforms. We have chosen to support such behavior by means of guarded
execution. Each operation can be annotated with a guard. If the guard evaluates
to true, the corresponding instruction is executed, and otherwise it is the identity.
The translation of this construct into Boolean logic is then trivial.

6 Related Work

In abstract interpretation [14], even for a fixed abstract domain, there are
typically many different ways of designing the abstract operations. Ideally, the
abstract operations should be as descriptive as possible, although there is usually
interplay with accuracy and complexity. A case in point is given by the seminal
work of Cousot and Halbwachs [15, Sect. 4.2.1] on polyhedral analysis, which
discusses different ways of modeling multiplication. However, designing transfer
functions manually is difficult (cp. the critique of Granger [18] on the difficulty of
designing transformers for congruences), there has thus been increasing interest
in computing the abstract operations from their concrete versions automatically,
as part of the analysis itself [5,6,20,21,24,27,28,30]. In their seminal work, Reps et
al. [30] showed that a theorem prover can be invoked to compute an transformer
on-the-fly, during the analysis, and showed that their algorithm is feasible for
any domain that satisfies the ascending chain condition. Their approach was
later put forward for bit-wise linear congruences [21] and affine relations [5].
Both approaches replace the theorem prover from [30] by a SAT solver and
describe the concrete (relational) semantics of a program (over finite bit-vectors)
in propositional Boolean logic. Further, they abstract the Boolean formulae offline
and describe input-output relations in a fixed abstract domain. Although the
analysis discussed in this paper is based on a similar Boolean encoding, it does
not compute any transformers, but rather invokes a SAT solver dynamically,
during the analysis. Contemporaneously to Reps et al. [30], it was observed by
Regehr et al. [27,28] that BDDs can be used to compute best transformers for
intervals using interval subdivision. The lack of abstraction in their approach
entails that the runtimes of their method are often in excess of 24h, even for
8-bit architectures.

The key algorithms used in our framework have been discussed before, though
in different variations. In particular, VSA heavily depends on the algorithm
in [4, Fig. 3], which is combined with a recent SAT-based projection scheme
by Brauer et al. [8]. Comparable projection algorithms have been proposed
before [22,25], but they depend on BDDs to obtain a CNF representation of
the quantifier-free formula (which can be passed to the SAT solver for value-set
abstraction). By way of comparison, using the algorithm from [8] allows for
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a lightweight implementation. The value-set abstraction, in turn, extends an
interval abstraction scheme for Boolean formulae using a form of dichotomic
search, which has (to the best of our knowledge) first been discussed by Codish
et al. [12] in the context of logic programming. Their scheme has later been
applied in different settings, e.g., in transfer function synthesis [6] or a reduced
product operator for intervals and congruences over finite integer arithmetic [7].
Reinbacher and Brauer [29] have proposed a similar technique for control flow
recovery from executable code, but they do not extend their bit-vectors for VSA.
They thus combine SAT-based forward analysis with depth-bounded backward
analysis to propagate values only into the desired successor branches.

Over recent years, many different tools for binary code analysis have been
proposed, the most prominent of which probably is CodeSurfer/x86 [2]. Yet,
since the degree of error propagation is comparatively high in binary code analysis
(cp. [28]), we have decided to synthesize transfer functions (or abstractions,
respectively) in our tool [mc]square [31] so as to keep the loss of information at
a minimum.

7 Concluding Discussion

In essence, this paper advocates two techniques for binary code analysis. First
of all, it argues that SAT solving provides an effective as well as efficient tool
for VSA of bit-vector programs. Different recent algorithms — most notably
projection using prime implicants and dichotomic search — are paired to achieve
this. The approach thereby benefits from the progress on state-of-the-art SAT
solvers. Secondly, the efforts required to implement a SAT-based program analysis
framework largely depend on the complexity of the target instruction set. To
mitigate this problem, we have proposed an intermediate representation based
on decomposing instructions and their side-effects into sequences of basic op-
erations. This significantly eases the implementation efforts and allows us to
port our framework to different hardware platforms in a very short time frame.
Our experiences with the AVR ATmega, Intel MCS-51 and ARM9 hardware
platforms indicates that adding support for a hardware platform can easily be
achieved within one week, whereas several man-months were required otherwise.
In particular, testing and debugging the implementation of the Boolean encodings
is eased. In this paper, we have not presented a formal semantics for the IR,
mostly because it is straightforward to derive such a semantics from existing
relational semantics for flow-chart programs over finite bit-vectors. Examples of
such semantics are discussed in [21, Sect. 4] or [13, Sect. 2.1].
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Abstract. Abstracted semantics of instructions of processor-based archi-
tectures are an invaluable asset for several formal verification techniques,
such as software model checking and static analysis. In the field of model
checking, abstract versions of instructions can help counter the state
explosion problem, for instance by replacing explicit values by symbolic
representations of sets of values. Similar to this, static analyses often
operate on an abstract domain in order to reduce complexity, guarantee
termination, or both. Hence, for a given microcontroller, the task at hand
is to find such abstractions. Due to the large number of available micro-
controllers, some of which are even created for specific applications, it is
impracticable to rely on human developers to perform this step. There-
fore, we propose a technique that starts from imperative descriptions of
instructions, which allows to automate most of the process.

1 Introduction

Formal verification of software for embedded systems is crucial for multiple
reasons. First of all, such systems are often used in safety-critical fields of
applications, such as chemical plants, where failures of the controlling system
may result in severe injuries or even fatalities. Furthermore, applying corrections
after delivering a system to the customer may be inpracticable or costly, for
instance in the case of devices embedded into cars. Such scenarios may be avoided
by formal verification, for instance software model checking [4, 2].

1.1 Focus

The focus of our work is model checking and static analysis [5] of binary code for
microcontrollers. For this purpose, we need to lift the given concrete semantics
of the instructions of which the binary consists to their abstract counterparts in
the respective domain. In the case of model checking, the sought-after abstract
version of each instruction should be able to operate not only on conventional
two-valued boolean logic, but on a variant of three-valued logic. This allows
for certain abstractions to be applied, which can help avoid the state explosion
problem. In the case of static analysis, the abstracted instruction should provide
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information on memory locations it reads and writes, plus on how executing it
affects the control flow.

Deriving abstract semantics from concrete semantics is a task that is usually
performed manually, thus exploiting the knowledge of an expert in the associated
fields. While this may be suitable for verification tools that are not likely to be
modified very often, such as for high level languages, this is not applicable in the
embedded domain, where a wide variety of different platforms is available to the
developer. In case the platform is switched to a different microcontroller, which
uses a different instruction set, the previous work on abstraction has to be done
anew.

1.2 Approach

In order to reduce the necessary effort, we propose to conduct the abstraction
on an already executable form of the instructions, that is, a description in an
imperative programming language. In our setting, such a description can also be
used to generate an instruction set simulator, which can build the state space for
model checking programs for the described platform.

1.3 Contribution

In this paper, we make the following contributions:

– We describe how microcontroller instruction sets can be translated into a
form that allows for automatic analysis of certain properties.

– Based on the results of these analyses, we can then derive abstract semantics
that are more suitable for state space building than the concrete semantics.
As an example, we detail how to obtain the necessary semantics for an
abstraction called delayed nondeterminism, which can be used in model
checking.

– We detail the generation of static analyzers for different platforms based on
the aforementioned analyses.

1.4 Outline

The rest of this paper is structured as follows. In Sect. 2, we illustrate the tools
we used in our contribution. Next, to motivate our work, we provide an example
that illustrates the effects of an inappropriate modeling of instructions. The
actual work on automatically deriving abstract semantics is contained in Sect. 4.
The next-to last section focuses on related work (Sect.5), and Sect. 6 concludes
this paper.

2 Preliminaries

In this section, we detail the environment of our contribution. First, we summarize
the main features of the [mc]square model checker, which uses several of the
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abstraction techniques we are interested in. Next, we focus on a specific technique,
called delayed nondeterminism. Finally, we present some features of a hardware
description language that serves as a starting point for our automatic derivation
of instruction semantics.

2.1 The [mc]square Assembly Code Model Checker

[mc]square [13] is an explicit-state model checker for microcontroller binary
code. Given a binary program and a formula in Computation Tree Logic (CTL),
[mc]square can automatically verify whether the program satisfies the formula,
or create a counterexample in case the program violates the formula. Atomic
propositions in formulas may be statements about the values of general purpose
registers, I/O registers, and the main memory. Currently, [mc]square supports
the Atmel ATmega16 and ATmega128, Intel MCS-51, and Renesas R8C/23
microcontrollers. Furthermore, it can verify programs for Programmable Logic
Controllers (PLCs) written in Instruction List (IL).

[mc]square builds state spaces for conducting the actual model checking by
means of special simulators. These can execute the programs under consideration
just like simulators provided by hardware vendors, by applying the semantics
of instructions to a model of the system’s memories, and simulating the effects
of interrupts, I/O ports, and on-chip peripherals. The key difference, however,
is that simulators in [mc]square support nondeterminism to model unknown
values, and also provide certain abstractions. Nondeterminism is introduced into
the system by I/O ports, timers, and interrupts. I/O ports communicate with the
environment, of which we have to assume that it can show any behavior, i.e., any
value might be present in I/O registers. Timers are modeled using nondeterminism
because [mc]square deliberately abstracts from time, resulting in the value of
timer registers to be unknown. Finally, interrupts are nondeterministic events
because an active interrupt may occur or not occur, and both cases need to
be considered for model checking. In case a nondeterministic bit has to be
instantiated to a deterministic 0 or 1, the simulator performs the necessary step.

The state creation process in [mc]square operates as follows:

– Load a state into the simulator.
– Determine assignments needed for resolving nondeterminism.
– For each assignment

• If the assignment indicates the occurrence of an enabled interrupt, simu-
late the effect of that interrupt. Otherwise, execute the current instruction.

• Evaluate truth values of atomic propositions.

– Return resulting states.

Using and resolving nondeterminism creates an over-approximation of the
behavior exhibited by the real hardware, allowing [mc]square to check for safety
properties. Instantiation of n nondeterministic bits usually results in 2n successor
states (i.e., exponential complexity), which is why immediate instantiation of
all nondeterministic bits is infeasible. Therefore, several abstraction techniques
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are implemented in [mc]square to prevent this. Within the scope of this paper,
we focus on two of these: first of all, a technique called delayed nondeterminism,
details on which are given in the next section, and second, on techniques that are
enabled by static analyses. The latter is an optional preprocessing step performed
before conducting the actual model checking, during which analysis results can
be used to apply abstractions such as Dead Variable Reduction [17, 14].

2.2 Delayed Nondeterminism

An instantiation of nondeterministic bits results in an exponential number of
successor states. Deterministic simulation triggers instantiation whenever an
instruction accesses a nondeterministic memory cell, hence it cannot avoid the
exponential blowup. However, at least on RISC-like load-store-architectures like
the Atmel ATmega microcontrollers, the instruction in question usually only
copies the content of the cell to some other cell, for instance a register. It does
not modify the value or use it as an argument, as would an arithmetic or logic
instruction. Delayed nondeterminism [11] is an abstraction exploiting this obser-
vation. Instead of immediately resolving the nondeterminism, a nondeterministic
value is propagated through memory. Only when an instruction actually needs
the deterministic value, the cell is instantiated. As a result, all the paths starting
at the original read instruction are not created at all. This approach proves
particularly useful in case a value consisting of multiple nondeterministic bits is
read, of which only a few bits are actually needed, for instance by an instruction
testing a single bit.

2.3 Description of Microcontrollers Using SGDL

The concept of [mc]square requires the tool to be hardware-dependent. While
this provides great accuracy as to hardware peculiarities, and also the ability to
provide easy to understand counterexamples, it necessarily results in the obvious
disadvantage of additional effort whenever adding support for a new platform. In
order to compensate for this, [mc]square features an extensible architecture, and
additionally contains a complete programming system for creating simulators in a
high level language. The language is called Sgdl, and a compiler for Sgdl is part
of [mc]square. Sgdl is a hardware description language specifically tailored to
describe microcontroller architectures, providing elements for describing entities
such as instructions, memories, and interrupts. In the following, we only introduce
those parts relevant for analyzing instruction semantics. Further details on Sgdl
are provided in [7, 6], and details on its precursor language from the AVRora
project are available from [16].

Example 1. Excerpt from the Sgdl description of the Intel MCS-51

format OPCODE_IMM8_IMM8 = {opcode[7:0], imm8_1[7:0], imm8_2[7:0]};

subroutine performCJNE(leftVal:ubyte, rightVal:ubyte,
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target:SIGNED_IMM8) : void {

if (leftVal != rightVal) {

$pc = $pc + target;

if (leftVal < rightVal) $CY = true;

else $CY = false;

}

};

instruction "cjne_acc_direct_rel" {

encoding = OPCODE_IMM8_IMM8 where {opcode = 0b10110101};

operandtypes = {imm8_1 : IMM8, imm8_2 : SIGNED_IMM8};

instantiate = {};

dnd instantiate = {};

execute = {

performCJNE($ACC, $sram(imm8_1), imm8_2);

};

};

In the example, an instruction called cjne acc direct rel is declared. The
binary encoding of this instruction consists of an 8 bit wide opcode and two
operands, each of which is also 8 bits wide. Within the scope of this instruction,
these 8 bit operands are to be interpreted as signed 8 bit integers, using two’s
complement representation. The concrete semantics are described within the
execute section of the instruction element. Global variables, i.e., the resource
model of the simulated device, are accessed by prefixing the according identifier
with a $ or a # (not in this example), whereas local variables are always accessed
with neither. Function calls are also possible, in this example for externalizing
the CJNE functionality, which is shared by the different variants of the CJNE
instruction (the MCS-51 instruction set contains four of these, each for a different
addressing mode).

In case an instruction may encounter nondeterministic values in some addresses
it accesses, the developer can indicate that the simulator should instantiate these
by adding an instantiate entry to the instruction. Any address contained in the
set will be instantiated. The dnd instantiate section has the same semantics,
but is used only when the simulation type is set to use delayed nondeterminism.

Global memories in Sgdl consist of two parallel structures to allow for
nondeterminism. The first structure is the value, which is accessed using the
aforementioned dollar symbol. The second structure is the nondeterminism mask.
Both structures together represent values in ternary logics, with the semantics
that a bit is nondeterministic iff its nondeterminism mask is set to 1. If the mask
bit is set to 1, then the content of value becomes irrelevant, as logically, it could
be either 0 or 1. Hence, generated simulators force it to 0, thus guaranteeing
consistent states and additionally removing a potential distinguishing feature of
states (which in some cases reduces the size of the state space).
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A typical instruction set description in Sgdl contains between 2.000 and 4.000
lines of code, depending on the number of instructions and overall complexity of
the device.

2.4 Notations

Definition 1. Alphabet for ternary logics
The alphabet for ternary logics is defined as Σ := {0, 1, n}. A word of length m
over Σ∗ is then a sequence of letters representing bits that are either explicitly 0,
1, or could be both.

Example 2. The word w := 000n 0000 can be instantiated to the explicit values
0000 0000 and 0001 0000.

Definition 2. Values of a memory cell
Let x be a memory cell of m bits width. Then

– val(x) denotes the content of x.
– ndm(x) denotes the content of the nondeterminism mask of x.

val and ndm are bit vectors that can be combined to represent a value in ternary
logic. Whenever a bit in ndm(x) is set to 1, then that bit is considered to be n ∈ Σ,
i.e., the content of val(x) for that bit becomes irrelevant.

3 A Motivational Example

As an example, consider the following instruction, which is part of the instruction
set of the Atmel AVR family of microcontrollers:

IN R0, TIFR

This instruction reads the value of the timer interrupt flag register, TIFR, and
copies it into the general purpose register (GPR) R0. No flags are altered by
this instruction. Accordingly, the semantics of the instruction, as depicted in the
instruction set manual (ISM) are

Rd← I/O

where Rd is a GPR, and I/O is an I/O register. Being an I/O register, TIFR may
contain nondeterministic data. Hence, we either need to instantiate all nondeter-
ministic bits immediately, or propagate this information into the destination, in
this example R0. For simulation (i.e., state space building), the optimal abstract
semantics would be

val(R0)← val(TIFR) (1)

ndm(R0)← ndm(TIFR) (2)

To achieve the latter, we have several options:
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1. Implement explicit code for copying. This approach requires a human de-
veloper to inspect the instruction semantics in the ISM, and implement the
necessary code into the simulator.

2. Naive automatic approximation. Whenever an instruction depends on at least
one nondeterministic input bit
– Check if all output bits allow nondeterminism. To obtain the output

bits without analyzing the instruction code, it suffices to execute the
instruction once, then revert the resulting machine state to the original
state.

– If all output bits allow nondeterminism, set all of them to nondeterminis-
tic.

– Else instantiate all input bits, and execute the instruction using the
concrete semantics from the ISM.

While the first approach, using a developer, can always yield the optimal
solution, it is also the most inappropriate one. Instruction sets usually consist of
hundreds of instructions, and each of those has to be lifted from the concrete to
the abstract. Furthermore, this is a very simple example, in which the developer
can hardly introduce any mistakes. Other examples, like complex arithmetic
instructions, can easily cause the developer to forget maybe the one or other
flag bit, which may result in the state space generator containing a correct
implementation for one simulation type (e.g., fully deterministic simulation based
on the concrete semantics), and a faulty one for another type (e.g., delayed
nondeterminism).

Compared to this, the proposed naive implementation of the automatic
approach certainly has the advantage of far less manual effort. Moreover, it
guarantees an over-approximation of instruction behavior, therefore preserving
the model checker’s ability to check safety properties. The disadvantage, however,
is that it is grossly inaccurate. Consider the following machine state:

val(R0) = 0000 0001 (3)

ndm(R0) = 0000 0000 (4)

val(TIFR) = 0000 0000 (5)

ndm(TIFR) = 1000 0000 (6)

Executing the example instruction using the naive abstract semantics will change
this to the following machine state:

val(R0) = 0000 0000 (7)

ndm(R0) = 1111 1111 (8)

val(TIFR) = 0000 0000 (9)

ndm(TIFR) = 1000 0000 (10)

That is, the source register, TIFR, retains its single nondeterministic bit, while the
previously deterministic target register R0 becomes completely nondeterministic.
The consequences of this change depend entirely on the next instructions accessing
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R0 (note that this need not necessarily be the immediately next instructions).
In case the next instruction accessing R0 is a bit test instruction such as SBIC

(i.e., skip next instruction if bit is clear), only a single bit may be instantiated.
In this case, the naive approach would yield the desired result, which is to
avoid instantiation until the value of nondeterministic bits is actually needed.
However, in case the next instruction is a comparison, such as CPI R0, 128, the
naive approach will result in an instantiation of 8 nondeterministic bits, yielding
256 successor states. Compared to this, the optimal approach would copy only
1 nondeterministic bit from TIFR to R0, thus the instantiation triggered by
executing CPI would result in only 2 successors.

The disadvantage of the naive implementation is due to the fact that it marks
all bits written by the instruction as nondeterministic. Such an approximation is
overly pessimistic for IN, as there is a direct mapping of input bit i to output bit
i in the equally wide registers TIFR and R0. For operations such as ADDC Rd, Rr

(addition with carry), however, there is no such mapping. Instead, the value of a
target bit may depend on the values of several bits in the input. Thus, without
any additional knowledge about the actions performed by an instruction, the
pessimistic assumption that any output may result, is actually an appropriate one.
In the following sections, we illustrate a concept how to gain such information,
and produce a smaller over-approximation.

4 Deriving Abstract Semantics

In this section, we focus on abstract semantics for delayed nondeterminism and
static analysis. Throughout the section, we use the term input of an instruction
as a synonym for the sets of locations read by it, and analogously the term output
for the set of written locations.

4.1 Prerequisites

Certain invariants regarding memory locations must always hold in both the
concrete and the abstract semantics of instructions, as they are needed to preserve
expressiveness:

– Operands. We assume that operands are always deterministic. This is guar-
anteed by construction, as they are instantiated once by the disassembler.

– Addresses. Addresses must always be deterministic, as a nondeterministic
address used in an instruction may result in any (visible) address to be read
or written. Especially on devices with memory-mapped I/O, this could also
have an impact on device behavior.

– Control flow. Any memory location relevant for control flow must remain
deterministic. This applies to status registers, but not to general purpose
registers. Nondeterministic control flow is undesirable because of a severely
reduced expressiveness (e.g., a status register indicating that the last computa-
tion yielded a result that was zero, negative, and odd). The direct implication
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is that control-flow relevant instructions must always operate on deterministic
data.

– Arithmetics and logics. Any computation involving a nondeterministic value
yields a nondeterministic result. If the target of the assignment requires the
result to be deterministic, then all variables involved in the computation have
to be instantiated first.

4.2 Identifying the Control Flow Type

As pointed out in Sect. 4.1, all control-flow relevant operations require their input
to be deterministic. The task at hand is therefore to separate jump and branch
instructions from arithmetic/logic and data transfer instructions. Furthermore,
for our second goal, generating an operative static analyzer, we do not only need
to generate transfer functions for each instruction (i.e., an abstract semantics),
but also establish a flow relation for creating the control flow graph (CFG). The
latter requires analyses to find out the number of succeeding instructions, and
their addresses.

Both goals can be achieved by means of certain static analyses of the execute
sections and subroutines in the Sgdl description. As the language supports
function calls, all analyses have to be conducted interprocedurally. Three analyses
suffice: Reaching Definitions Analysis (RDA), Read Variable Analysis (RVA),
and Written Variable Analysis (WVA). RDA is a standard textbook analysis
[10], RVA is basically the collecting semantics of Live Variables Analysis (LVA)
(i.e., an LVA with a constant empty kill function), and WVA is the counterpart
of RVA with respect to written variables. The overall idea is to analyze write
accesses to the program counter. Figure 1 illustrates the classification algorithm,
which works as follows:

– Construct the control flow graphs for the current instruction and all called
functions.

– All instructions implicitly increment the program counter by their own size,
so insert one reaching definition (RD) into the entry node of the instruction
CFG.

– Conduct the analyses.
– Classify instructions based on the number and origin of RDs reaching the

exit node:
• 1 RD from the entry node: regular instruction
• 1 RD, but not from the entry node: program counter is inevitably over-

written with a single value, i.e., an unconditional jump instruction
• 2 RDs: a conditional jump

– Refine the classification: jump instructions manipulating the stack could
be call or return instructions, depending on whether they read / write the
content of the program counter from / to the stack. Use RVA and WVA
results to distinguish these.

The second step, obtaining the value written at runtime into the program
counter, is part of the next section. Technically, it consists of two steps: first, use
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conduct RDA

RD from entry node? branch

regular jump

reads/writes stack top?

call return

1 RDs 2 RDs

yes
no

write
read

initial classification

refinement none

Fig. 1. Classification strategy for control flow type

the RDA to locate assignments to the program counter, and second, backtrack
and collect all subexpressions on the right hand side of such assignments. The
resulting expression can then be evaluated at runtime on concrete instances of
the instruction.

4.3 Analysis of Data Flow

An analysis of the data flow has to identify the effects of individual assignments
to global variables. The goal of the analysis is to identify possible propagations of
nondeterminism and also the opposite, variables that must not be nondeterministic
when executing the instruction. Formally:

Let α be an instruction consisting of individual statements α0, . . . , αm,

αi ∈ {memidentifieri(addr expri)← expri,

localvar identifier← expri,

call fi(argsi)},
1 ≤ i ≤ m (11)

Let Addrα be the set of identifiers known to be used as an address within the scope
of α, and initialize Addrα := ∅. Let Var(expr) be the set of variables occurring
in expr . Let C ⊆ N × Addresses × Addresses be a copy relation, wherein each
entry is of the form (instruction id , source, target).

Definition 3. Initial data flow analysis algorithm
If α has been identified by the control flow algorithm as a jump, skip it. Else:

For all αi ∈ α
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– If αi = memidentifieri(addr expri)← expri:
• Addrα := Addrα ∪ Var(addr expri)
• Addrα := Addrα ∪ Var(addr) for all addresses addr occuring in expri.
• If expri = memidentifierj(addr) for some memory identifier j and

address addr, add an entry (i, memidentifierj(addr),
memidentifieri(addr expri) to the copy relation C

– If α = call fi(argsi)}: apply this algorithm to the called function to obtain a
summary of function effects. Join resulting summary into analysis information
of caller.

Next, refine the initial analysis results by collecting subexpressions referenced
in expressions. The goal is to relate identifiers used as addresses back to the
operands and global resources visible at the beginning of the instructions’s
execute block. This can be achieved by a backwards search through the CFG.
In case the analysis should fail in this for a given expression (possible due to
branches in the CFG, indicating the value for a subexpression is not unique),
there are two possible continuations, depending on the type of the expression:
if the expression is known to be used an an address, either in reading or in
writing, we need to mark all identifiers used in the instruction for instantiation.
Otherwise, if the expression is known to be used as the right-hand side (rhs)
value in an assignment, we have to replace it by a value that is marked completely
nondeterministic.

4.4 Synthesis of Abstract Semantics

Following completion of control and data flow analysis, we can generate abstract
semantics for each instruction.

Delayed Nondeterminism Instructions are considered as a list of individual
assignments. For each of these, apply a translation rule. It is necessary to also
add the original concrete semantics to the output because it might be necessary,
during execution, to revert to it, and in the process of that, instantiate all
nondeterminism in the input. This can happen if at least one of the assignments
tries to write to an address that has to remain always deterministic (cf. the
requirements detailed in Sect. 4.1).

Definition 4. Translation rules for assignments
Let αi = memidentifier(addr expr)← expr.

Let Instα be the set of locations that have to be instantiated before executing
α. Initially, Instα := Var(addr expr).

Replace addr expr, expr by the collected subexpressions, such that both ex-
pressions depend only on global variables and operands. If this is not possible
because the analysis has failed, see below for a recovery strategy. Else, the abstract
version α̂i of α is defined by

– If the copy relation C created during analysis contains an entry (i, src, trgt),
then α̂i := [val(src) := val(trgt);ndm(src) := ndm(trgt)]
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– Else (data is modified, so instantiate to generate concrete values)
• Instα := Instα ∪Var(expr)
• α̂i := αi

Recovery strategy: for expressions whose composition cannot be analyzed, the
obvious solution is to assign a nondeterministic value to the target. In case this
is not desirable, for instance because the target is a frequently accessed or very
wide register (i.e., many nondeterministic bits would be created), a fallback would
be to instantiate every input of this instruction, and use the concrete semantics
instead. Thus, no improved semantics is available for this instruction, but at least
it is guaranteed that the abstraction would not actually result in state explosion
instead of preventing it.

Using these translation rules yields the semantics of delayed nondeterminism.
An obvious improvement concerns the condition for instantiation, which, in the
above version, is if any computation is performed, then instantiate all inputs.
Therefore, all arithmetic instructions will instantiate all of their inputs because
they necessarily contain at least one such αi. A more permissive condition exploits
the computation rules for ternary logic:

– For all operators in the input language, i.e., +,−, ∗, /, . . ., introduce new

abstract versions +̂, −̂, ∗̂, /̂, . . .. Semantics are those of their concrete coun-
terparts, except that the abstract versions operate also on nondeterministic
(n) bits. For instance, 0 +̂n = n +̂ 0 = 1 +̂n = n +̂ 1 = n, 0 ∗̂n = 0, 1 ∗̂n = n,
and analogously for all other operators.

– For each rhs expression in an assignment, create an abstract syntax tree
representation

– Conduct a tree pattern matching, as described by Aho et al. [1], and apply tree
rewriting rules, to replace the operators in the expression by their abstract
counterparts.

These advanced rules then leave only two cases for forced instantiation of all inputs:
first, an address expression that cannot be discomposed into its components,
and second, an attempted write to a location marked as must always remain
deterministic.

Static Analysis Using the results from the the control flow type analysis, it
is possible to identify, for each instruction, the number of successors and their
address, either absolute or relative. Therefore, given a program consisting of
instances of these instructions, we can reconstruct the control flow graph from the
disassembled binary representation of the program. Furthermore, the data flow
analysis algorithm presented in the last section necessarily identifies read and
written memory locations, i.e., provides a starting point for generating transfer
functions for analyses such as RDA and LVA.

[mc]square already provides a framework for static analysis, which can
conduct analyses in case the developer provides a CFG and transfer functions for
the named analyses. Therefore, the actual generation of an operative analyzer is
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reduced to the task of generating the necessary code from the existing analysis
results.

5 Related Work

HOIST is a system by Regehr [12] that can derive static analyzers for embedded
systems, in their case for an Atmel ATmega16 microcontroller. This is similar
to our approach. The key difference is that they do not use a description of the
hardware, but either a simulator or the actual device. For a given instruction
that is executed on the microcontroller, HOIST conducts an exhaustive search
over all the possible inputs, and protocols the effects on the hardware. These
deduced transfer functions are then compacted into binary decision diagrams
(BDDs), and eventually translated into C code. While this mostly automatic
approach can provide very high accuracy in instruction effects, it certainly has
the disadvantage of exponential complexity in the number of parameters for an
instruction. Our approach does not depend on this, and is also automated, but
the correctness of the results depends on the correctness of the description of the
hardware. Moreover, HOIST is limited to analyzing ALU operations, whereas
our analyzer, Sgdl-Sta, can analyze any kind of instruction.

Chen et al. [3] have created a retargetable static analyzer for embedded soft-
ware within the scope of the MESCAL project [8]. Similar to our approach, they
process a description of the architecture, which in their case is called a MESCAL
Architecture Description (MAD). Automatic classification of instructions for
constructing the CFG is apparently also possible in their approach, and they
hint at that this is possible due to some attributes present in the MAD that
allow identification of, for instance, the program counter. However, no further
detail is provided on the ideas involved in classification. The generated analyzer
is suitable for analyzing worst case execution time of certain classes of programs
intended to run on the hardware.

Schlickling and Pister [15] also analyze hardware descriptions, in their case
VHDL code. Their system first translates the VHDL input into a sequential
program, before it applies well-known data flow analyses such as constant prop-
agation analysis. These analyses are then used to prove or disprove worst case
execution time properties of the hardware. In contrast to this, we concentrate
on the way the resource model is altered by instructions, deliberately neglecting
timing.

Might [9] focuses on the step from concrete to abstract semantics for a variant
of lambda calculus. In their examples, they also relate their work to register
machines, which, albeit a concept from theory, share some commonalities with
real-world microcontrollers. They point out the similarities between the two
semantics, and how to provide analysis designers with an almost algorithmic
approach to lifting the concrete to the abstract. Hence, the foremost difference
to our approach is that their contribution is certainly more flexible, as they rely
on an expert. Compared to this, our approach is intentionally restricted to only
a few abstractions, but for these, it is fully automated.
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6 Conclusion

This paper shows that a single description of an instruction-set architecture, given
as an implementation in a special-purpose imperative programming language,
can serve as a starting point for generating several verification tools. We have
shown how to switch from register transfer-level semantics based on concrete
values to a partially symbolic technique, called delayed nondeterminism. To this
end, we have described static analyses used on the imperative descriptions, by
which the intention behind instructions becomes visible and ready for translation.
Furthermore, these analyses can also be used to obtain a characterization of
instructions needed for analyzing the code for the target platform.

The concepts developed in this contribution should be applicable not only
to [mc]square and the Sgdl system, but to any model checker interpreting
assembly code. In order to verify the concepts, we have implemented a static
analyzer for Sgdl, called Sgdl-Sta. So far, we have successfully verified the
ideas concerning classification of instructions into control flow classes. Classifying
the instruction sets of both the ATmega16 and the MCS-51 microcontrollers
can be achieved in less than 10 seconds. Additionally, we have used the analysis
results for generating an operative static analyzer for the ATmega16 simulator,
which enables a variant of Dead Variable Reduction [17] for this simulator. Hence,
a direction for future work will be the implementation of the other concepts,
especially the creation of the abstract semantics for delayed nondeterminism,
and a comparison between the derived and the manually implemented versions
of this abstraction technique.

Clearly, the results indicate that abstraction for hardware-dependent model
checkers can, to a certain degree, be achieved automatically. Thus, it is not
strictly necessary to have an expert in both model checking and embedded
systems available, who is then to perform a fine-tuning of such tools. A practical
implication of this improvement is that it might be possible for a non-expert to
retarget a model checker to a new platform, at least in case the set of automatically
derivable abstractions suffices. Therefore, we consider it necessary to conduct
further research on other abstractions, and figure out to what extent it is possible
to derive their semantics as well. Obvious directions for this include lifting the
concrete semantics to interval semantics (i.e., the value of a memory cell is only
known to be in an interval, instead of several distinct values), and easing our
restrictions on nondeterministic control flow.
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Abstract. This paper examines a novel strategy for developing correct-
ness proofs in interactive software verification for C programs. Rather
than proceeding backwards from the generated verification conditions,
we start by developing a library of the employed data structures and
related coding idioms. The application of that library then leads to cor-
rectness proofs that reflect informal arguments about the idioms. We
apply this strategy to the low-level memory allocator of the L4 micro-
kernel, a case study discussed in the literature.

1 Introduction

Interactive theorem proving offers several recognized benefits for functional soft-
ware verification. From a foundational perspective, it enables the definition of
the language semantics and the derivation of the Hoare logic, which ensures that
the verification system is sound (relative to the defined semantics) (e.g. [1–3]).
The background theories for reasoning about the machine model can likewise
be derived, rather than axiomatized [4, §1.4][1], thus avoiding known practical
issues of inconsistencies [5, §7]. From the perspective of applications, interactive
provers offer strong support for the development of theories of the application
domain [4, §1.3], which are not restricted to special classes of properties [6,
§2.3]. In particular, they can address algorithmic considerations [7, §7.2], such
as geometric questions [8, §4.4] or properties of defined predicates [9, §4.3].

However, interactive software verification incurs the obvious liability of re-
quiring the user to guide the proof in some detail and to conceive a proof struc-
ture matching the intended correctness argument. This is the case even more in
the development of background theories applicable to several algorithms. The
necessity of strategic planning and human insight involved is often perceived as
a major obstacle to the practical applicability of interactive proving.

This paper proposes to address the challenge of structuring correctness proofs
by focusing on the idioms and coding patterns connected with the data structures
found in the verified code. The benefit to be gained from this approach is clear:
users can bring to bear their insight and experience as software engineers on the
formal development, and the proof’s structure will follow the informal correctness
arguments used by developers, thus making it more understandable and hence
maintainable.
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We demonstrate and evaluate this strategy using a study of the memory
allocator of the L4 microkernel, which has previously been verified by Tuch et
al. [10, 11] and thus affords a point of comparison. Although the allocator merely
maintains a sorted singly-linked list of free blocks, we have found even a simplified
fragment of the code surprisingly hard to verify in a previous attempt [12], owing
to the many technical aspects introduced by the low-level memory model. This
impression is confirmed by the level of detail present in the original proof [13].

The benefit of the strategy proposed now can therefore be gauged by whether
the found proof matches the essentially simple structure of the algorithm, thus
appearing as a detailed version of an informal correctness argument. This goal
also relates to a peculiarity of interactive software verification. Differing from
mechanized mathematics, no effort is spent on making the proof more concise
or elegant once it is found—its mechanically verified existence is sufficient.

For this reason, the paper’s structure reflects the development of the proof.
Section 2 gives an overview of the allocator and points out the coding idioms
that make the code seem straightforward. Section 3 then formalizes these idioms
in a library of singly-linked lists and their standard manipulations. Section 4
gives the correctness proof on the basis of that library, with an emphasis on the
direct match between the library theorems and informal correctness arguments.

1.1 An Overview of Lightweight Separation

We conduct the proof within the lightweight separation verification system [14,
15]. It is developed as a conservative extension of Isabelle/HOL and permits the
verification of low-level programs in a C dialect inspired by [1].

The idea of lightweight separation is to complement the standard formulation
of assertions in HOL with explicit formal representations of the memory layout.
Towards that end, assertions usually contain a conjunct MIA where M is the
current memory state and A is a cover, which is a predicate on address sets. A
cover is well-formed if it accepts at most one address set. We call the address set
accepted by a well-formed cover A the memory region covered by A. For instance,
the following constant captures a block of n bytes at a. It describes the address
set and excludes overflows in address arithmetic, making the block contiguous
({a..<b} denotes a half-open interval [a, b) in Isabelle/HOL; ⊕ is address offset).

block a n ≡ λS. S = {a ..< a ⊕ n} ∧ a ≤ a ⊕ n

MIA states A covers the allocated region of M. For M�A, A is allocated in M. The
subcover relation A�B states that the region of A is contained in the region of B.
The memory layout is described by nested cover expressions combined by the
disjointness operator A ‖B. The system provides covers for standard constructs,
such as variables and blocks whose size is given by a type. New constants for
covers can be defined as needed. In particular, one can define covers for inductive
data structures using Isabelle’s built-in inductive command.

The lightweight separation tactics then prove, by symbolic manipulation of
cover expressions [14], the allocatedness of memory accessed by the program
and the disjointness of regions read in assertions and modified by programs. If
necessary, they unfold given layouts to expose their constituent parts [15].



Structuring Interactive Correctness Proofs by Formalizing Coding Idioms 35

(a)

(b)

Fig. 1. Allocation and Deallocation in the Free List

2 The L4 Memory Allocator

The memory allocator of the L4 microkernel [13] is responsible for the low-level
allocation of memory blocks. The interface consists of two routines alloc and
free that enable client code to obtain and release memory blocks. We now
describe and analyze their overall structure.

2.1 Data Structure and Routines

The microkernel allocator offers basic services to higher-level allocators and han-
dles memory blocks as multiples of 1kb. Internally, it maintains a free list of 1kb
chunks, whose first word is a pointer to the next chunk. The chunks in the list
are ordered by their start addresses to enable efficient compaction during allo-
cation. The routines alloc and free (Appendix A) in essence cut out or splice
in sequences of chunks at the correct position within the free list.

The alloc routine advances a pointer curr forward through the free list
(Fig. 1 (a); dashed arrows indicate the possible crossing of several chunks). At
each chunk, a nested loop advances a pointer tmp to check whether the sequence
of adjacent chunks starting at curr matches the requested size. If this is the case,
the routine removes the sequence from the list, initializes it with 0-bytes, and
returns it to the caller as a raw block of memory. The prev pointer is required to
splice out the returned chunks and always lags one step behind the curr pointer.

The free routine dually splices a returned block of memory back into the
free list (Fig. 1 (b)). Since the block’s size may be a multiple of 1kb, the routine
first creates a list structure inside the raw memory block. Then, it searches for
the place where the new list fragment must be inserted to maintain sortedness.
Finally, it links the new fragment into the free list. Like the alloc routine, it
maintains a prev pointer to perform that final pointer manipulation.

2.2 Idioms for List Operations

The routines’ code (Appendix A) appears straightforward after this explanation
of its purpose. The reason for the simple reading is that the code only applies
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ListNode *p = list_head;

while (p != NULL && not found ) {
perform check & return/break ;

p = p->next;

}

ListNode **prev = &list_head;

ListNode *p = list_head;

while (p != NULL && not found ) {
perform check & return/break ;

prev = &p->next;

p = p->next;

}
(a) (b)

Fig. 2. Iteration Through Lists

well-known patterns and idioms: the experienced developer recognizes these and
uses them in arguments about the code’s functionality and correctness.

The first and most basic idiom is the search for a particular point in a list.
The coding pattern is shown in Fig 2 (a): some pointer p is initialized to the first
node, and is advanced repeatedly by dereferencing the next pointer of the node.
The checks in the while test or body are usually used alternatively. Following
the terminology of the C++ STL [16], we will call the pointer p an iterator.
Informally, the iteration works without failure because p never leaves the list
structure: it is “properly” initialized and “properly” advanced to the next node
in the list. Since it points to a node after the test for NULL, the iterator p can be
dereferenced in the checks without causing a memory fault.1

If a modification is intended after the search, the idiom must be extended by
some reference to the predecessor node of p, in order to insert or remove nodes
at p by pointer manipulation. There are several variants of such an extension.
The L4 allocator uses the one shown in Fig. 2 (b), which makes use of C’s ability
of taking the addresses of arbitrary memory objects. The constraints associated
with prev are that *prev = p and that prev points either to the list-head
variable or to the next field of some node in the list.2

After the loop, the manipulation of the list structure involves the assignment
*prev = q, where q is either some successor node of p for the removal of p or a
new node to be inserted before p. To show that the resulting pointer structure
is the desired linked list, informal arguments usually use pointer diagrams: the
reached situation is shown in Fig. 3 on the left. If prev = &head, the argument
is simple. Otherwise, one needs to expose the node containing the prev pointer
in the diagram, possibly followed by extracting node p from the remaining list.
Then, one draws the algorithm-specific pointer operations, e.g. those of Fig. 1,
and argues that the expected list structure results. Note that the case distinction
on prev = &head, which is necessary in the argument, is not present in the code.

1 These are also the requirements for the STL’s most basic forward iterator [16].
2 A common alternative uses a sentinel head node, such that prev is a node pointer

and p is inlined as prev->next (e.g. the slist library of g++). This variant has the
advantage of unifying the reasoning by avoiding the case distinction about the exact
target of prev. The library in §3 supports this variant as well.
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Fig. 3. Extraction of a Node in the Follow Iterator Idiom

Fig. 4. Establishing the Successor Structure

2.3 Idioms for Aligned Low-level Memory Access

The iterator idiom, once identified, can also be applied to algorithms that do
not handle list-like data structures. The zero_mem function (Appendix A), for
example, initializes a memory block by writing machine words, i.e. by setting
groups of 4 bytes at a time. Its loop advances the pointer (int*)p+i as an
iterator in steps of 4, by incrementing i in each loop iteration. The pointer is
properly initialized by setting i=0. Advancing the iterator by i++ leaves it within
the bounds of the raw memory block, because the block’s size is a multiple of 4.

The first loop of dealloc (§4.3) similarly establishes a list structure in a
memory block (Fig. 4) by advancing a pointer p, initialized to start address a, in
1kb-steps. The proof obligations are the same as for the iterator in zero_mem.

The correctness arguments in both cases therefore consist of the familiar
“initializing” and “advancing” an iterator, and can be carried out analogously
to the list case. Although the formulation of the invariants is quite different, the
proofs thus still reflect the common structure. For space reasons, we will not
discuss them further.

3 A Library of List Manipulations

This section captures the idioms from §2.2 in a generic library of singly-linked
lists. Using this library, the correctness proof in §4 will be structured according
to informal arguments, after the allocator’s free list has been proven an instance
of the general case. For space reasons, we omit derived constructs, such as the
typed abstraction of the nodes’ contents as HOL values and the variant of follow
iterators mentioned in Footnote 2. The library consists of 750 lines and has been
re-used in two further case studies (§6).

3.1 Parameters and Assumptions

The library is formulated as an Isabelle locale [17] to abstract over the specific
structure of list nodes. Locales can depend on parameters and state assumptions
about these. The list library has three parameters (1) (“::” denotes a type con-
straint): node is a cover (§1.1) for a single list node and succ reads the successor
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(or “next”-) link from a given node in a given memory state. Both usually depend
on type definitions, so a global context gctx with these definitions is added.

node :: addr⇒ cover succ :: addr⇒memory⇒ addr gctx :: ctx (1)

accesses (succ p) M (node p) node p S =⇒ p∈S wf-cover (node p) (2)

The theory makes three natural assumptions (2) about these parameters: reading
the successor of a node depends only on that node (accesses f M A states that
memory-reading function f, when applied to state M, depends only on the region
covered by A); the base pointer of a node is contained in its footprint; finally, the
node cover must be well-formed (§1.1). Note that these assumptions are implicit
in pointer diagrams and are validated by the usual list structures in programs.

3.2 List Structure

The standard approach to lists (e.g. [18]) is to define a predicate to enumerate
the nodes in list fragments. An inductive definition is given by the introduction
rules (3). A parallel definition for cover p q M, the memory region of the list, is
straightforward. ([ ] is the empty list, # denotes the “cons” operation)

p = q xs = [ ]

nodes p q xs M

p 6= q nodes (succ p M) q ys M xs = p # ys

nodes p q xs M
(3)

Already at this point, the library yields a benefit in the form of useful properties,
such as the nodes of a list being distinct (4).

nodes p q xs M

distinct xs
(4)

Due to their parallel definitions, the nodes and the cover of a list are closely re-
lated. In particular, if a list is allocated, then it consists of a sequence of nodes (5)
and—since null is never allocated—it cannot contain null as a node (6).

M � cover p q M

∃ xs. nodes p q xs M
(5)

M � node p

p 6= null

nodes p q xs M M � cover p q M

null /∈ set xs
(6)

We have noted in §2 that informal arguments by pointer diagrams address the
“extraction” of nodes from a list and the resulting “overall” list. We now re-
flect the graphical arguments in the form of theorems to make their application
straightforward: for every change in the pointer diagram, the formal proof con-
tains an application of the corresponding theorem. For space reasons, we omit
the parallel development for cover.

Theorems (7) and (8) enable the extraction and integration of the first node
of a list. Note how the pre-condition p 6= q reflects the check of the idiomatic
while loops from §2.2. To save a separate application of (4), (7) yields the de-
rived information that the nodes were originally distinct. The complementary
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theorems (9) and (10) manipulate the last node of a list. The final rules (11)
and (12) reflect splitting and joining at a given node of the list, as is necessary
for Fig. 1. The last premises of (10) and (12) ensure that no cycles have been
created. In the frequent case where q is null, they can be proven by (6); the
library provides specialized rules for this case to simplify proofs further.

p 6= q

nodes p q xs M = (∃ ys. nodes (succ p M) q ys M ∧ xs = p # ys ∧ p /∈ set ys)
(7)

nodes r q ys M succ p M = r p 6= q

nodes p q (p # ys) M
(8)

q = succ r M r ∈ set xs

nodes p q xs M = (∃ ys. nodes p r ys M ∧ xs = ys @ [ r ] ∧ q /∈ set xs)
(9)

nodes p r ys M succ r M = q q /∈ set (ys @ [r])

nodes p q (ys @ [r]) M
(10)

r∈ set xs

nodes p q xs M = (∃ ys zs. nodes p r ys M∧ nodes r q zs M∧ xs = ys @ zs∧ q /∈ set xs)
(11)

nodes p q xs M nodes q r ys M r /∈ set xs

nodes p r (xs @ ys) M
(12)

3.3 Iterators

In principle, the definitions and theorems from §3.2 are sufficient state loop in-
variants and perform proofs about list manipulating programs (e.g. [18]). How-
ever, this approach invariably has to consider the set of list nodes. The idioms
of §2.2, on the other hand, focus on the “current” and the “next” node, which
aligns the informal reasoning with the local list structure—the inductive argu-
ment about the iterator referencing one of the list’s nodes is left implicit.

We can obtain proofs that reflect the informal reasoning by formalizing the
idea of an “iterator” itself. In the STL concept [16], an iterator into some data
structure always points to one of its elements or is a special one-past-the-end
iterator. In the case of fragments of singly-linked lists, this idea is expressed by
the following definition.

iter a p q M ≡ ∃xs. nodes p q xs M ∧ (a ∈ set xs ∨ a = q)

The loop invariant for the iteration idiom can then simply contain the conjunct
iter p head null M, thus hiding the list structure as desired. Furthermore, the infor-
mal arguments about “initializing” and “advancing” an iterator from §2.2 are
reflected by theorems (13), and these are used to establish the invariant and
prove its preservation after the loop body. When the sought node in the list
has been found, it can be exposed by (14), followed by (8), without leaving the
iterator idiom.

M � cover p q M

iter p p q M

iter a p q M a 6= q

iter (succ a M) p q M
(13)

iter r p q M

nodes p q xs M = (∃ ys zs. nodes p r ys M∧ nodes r q zs M∧ xs = ys @ zs∧ q /∈ set xs)
(14)
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3.4 Follow Iterators

Whenever a list manipulation is intended after iteration, one has to keep an
auxiliary pointer to the node preceding the current one (§2.2). Since the pattern
is so frequent, we introduce another abstraction to capture it. Since the prev

pointer lags one step behind a cur pointer, we choose the term follow iterator.
The locale for follow iterators extends that of iterators by introducing param-

eters that abstract over the structure of the “successor field”, i.e. the memory
object containing the “next” pointer. By the idiom, this structure must be the
same as that of the head variable. The structure is given by a cover succ-field.
The function rd-succ-field is used for reading its content. The offset of the field
within the node is given by succ-field-off.

succ-field :: ”addr⇒ cover”
succ-field-off :: ”word32”
rd-succ-field :: ”addr⇒ memory⇒ addr”

The locale’s assumptions describe the following relationships between these pa-
rameters: the special accessor reads the information gained by succ (§3.2) and
depends only on the given region, which must be contained in the corresponding
list node and must be well-formed (§1.1).

rd-succ-field (p⊕ succ-field-off) M = succ p M

accesses (rd-succ-field p) M (succ-field p)

succ-field p� node (p⊕ - succ-field-off) wf-cover (succ-field p)

The follow iterator abstraction is then defined as expected (§2.2, Fig. 1): cur is
an iterator, while prev points to a link to cur; further, prev either points to the
head variable or is itself an iterator within the list.

follow-iter prev cur head p q M ≡
iter cur p q M ∧ rd-succ-field prev M = cur ∧
(prev = head ∨ (prev ⊕ - succ-field-off 6= q ∧ iter (prev ⊕ - succ-field-off) p q M)

This newly defined construct establishes another layer of abstraction over the
raw list structure, in that it enables the now familiar reasoning patterns in a self-
contained system: theorems (15) and (16) capture the initializing and advancing
of the iterator and thus replace (13) in the proofs. It is worth checking that
the additional premises reflect the initializations from the idiomatic code (§2.2,
Fig. 2 (b)), thus making the application of theorems straightforward.

M � cover p q M prev = head cur = p cur = rd-succ-field prev M

follow-iter prev cur head p q M
(15)

follow-iter prev’ cur’ head p q M
cur’ 6= q cur = succ cur’ M prev = cur’ ⊕ succ-field-off

follow-iter prev cur head p q M
(16)

Furthermore, the reasoning about the modification after the search from Fig. 3
can now be expressed in a single theorem (17). The prerequisite case distinction
from the informal argument of §2.2 can be introduced by the (tautological)
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rule (18) by a single tactic invocation, saving explicit terms in the proof.

follow-iter prev cur head p q M prev 6= head

nodes p q xs M = (∃ys zs. nodes p prev ys M ∧ nodes cur q zs M ∧
xs = ys @ prev # zs ∧ q /∈ set xs)

(17)

follow-iter prev cur head p q M

prev = head ∨ prev 6= head
(18)

The follow-iter abstraction thus encapsulates all information necessary to perform
the split. This is evident in the proof of (17), which is based on a combination
of the elementary lemmas (11), (12), (7), and (4) about the list structure (§3.2).
While that proof still follows an informal argument by pointer diagram, the for-
malization in follow-iter and (17) enables the user to link the concrete proof to the
code’s intention directly. Furthermore, it saves a lot of detailed and cumbersome
manipulation of formulae, which we struggled with in [12], and makes the proof
more readable and thus more maintainable.

4 The Correctness Proof

This section gives the correctness proof of the allocator. The proof is structured
by the application of the library from §3 and thus follows the informal arguments
used in §2. The proof script is available from the author’s homepage [19].

4.1 Formalizing the Allocator’s Free List

We first instantiate the list library from §3 for the allocator’s free list. Even
though the library seems to suggest some “typed” concept of lists, the allocator’s
data structure fits directly: after instantiating the parameters as follows and
discharging the library’s assumptions by 40 lines of straightforward tactics, the
developed constants and reasoning patterns are available. (�� delineates program
syntax in HOL, here that of types. The system contains a pre-processor.)

node p ≡ block p 1024
succ p M ≡ to-ptr (rd gctx p�void*�M)
succ-field p ≡ typed-block gctx p�void*�
rd-succ-field a M ≡ to-ptr (rd gctx a�void*�M)
succ-field-off ≡ 0

We then introduce an abbreviation kfree-list for reading the global head variable
kfree_list and define the invariant free-list-inv: the chunks in the list are ordered
by their base addresses and they are aligned to 1kb. The free-list-cover summarizes
the memory occupied by the data structure.3

kfree-list ctx M ≡ to-ptr (rdv (in-globals ctx) ”kfree-list” M)
free-list-inv ctx M ≡ (∃C. nodes (kfree-list ctx M) null C M ∧ sorted C ∧

(∀p ∈ set C. aligned p 1024))
free-list-cover ctx M ≡ var-block (in-globals ctx) ”kfree-list” ‖ cover (kfree-list ctx M) null M

3 We note in passing that the introduced information hiding is maintained for clients
by the theorem accesses (free-list-inv ctx) M (free-list-cover ctx M): the lightweight sep-
aration framework will prove that the free list is not influenced by the clients’ memory
manipulations and thus solves the frame problem (e.g. [20]) in a natural fashion.
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4.2 Allocation

The alloc routine searches for a contiguous block of memory that is large enough
to fit the requested size (§2.1). Its specification is translated from [13]: the pre-
condition requires that the free list data structure is intact and the memory does
contain the free list. Furthermore, the requested size must be a multiple of 1kb.

M I free-list-cover ctx M ∧ free-list-inv ctx M ∧ 0 < size ∧ 1024 udvd size ∧ size = SIZE

The post-condition distinguishes between success and failure. In both cases, the
data structure itself is preserved. If the allocation is successful, an aligned block
of 0-initialized memory has been extracted from the free list. The auxiliary (or
logical) variable SIZE links the pre- and post-conditions as usual.

free-list-inv ctx M ∧
(return 6= null −→ M I free-list-cover ctx M ‖ block return SIZE ∧

aligned return 1024 ∧ zero-block ctx return SIZE M) ∧
(return = null −→ M I free-list-cover ctx M)

The nested loops (Appendix A) of alloc advance the pointers curr and tmp,
where the inner loop leaves curr unchanged. The outer loop invariant is therefore
the same as the following inner loop invariant, except that Lines 3–4 are missing:

1 free-list-inv ctx M ∧ size = SIZE ∧ 0 < size ∧ 1024 udvd size ∧ i ≤ size div 1024 ∧
2 follow-iter prev curr �&kfree-list� kfree-list null M ∧
3 curr 6= null ∧
4 (tmp 6= null −→ cover curr tmp M = block curr (i * 1024) ∧ iter tmp curr null M) ∧
5 M I free-list-cover ctx M ‖ size ‖ prev ‖ curr ‖ tmp ‖ i ∧
6 M � typed-block prev �void*� ‖ size ‖ prev ‖ curr ‖ tmp ‖ i

Line 1 preserves the pre-condition and states that i will not exceed the bound
given by the size parameter. Line 2 invokes the follow iterator idiom (§2.2) from
the library (§3.4). Line 3 preserves the test result of the outer loop. Line 4 uses
the notation for memory layouts (§1.1, §3.2) to state that a contiguous block of
memory is found between curr and tmp. Line 5 extends the initial memory layout
by the local variables; Line 6 adds that prev is not a local variable while leaving
open whether it refers to the variable kfree-list or a list node.

The structure of the correctness proof is now already clear: the initializa-
tions before both loops leave precisely the situation where theorems (13) and (15)
about the initialization of iterators apply. For the preservation of the outer invari-
ant, the pointer assignments in the body match the idiom (§2.2) such that (16)
is sufficient. All of these steps thus reflect the idiomatic, informal view, and the
proof is merely a more precise form of argument.

For the preservation of the inner invariant, the then-branch is trivial. In the
else-branch, only Line 4 needs to be newly established. In the conceptual view
of §2.2, the code advances the iterator tmp; correspondingly (13) solves the iter-
part immediately. The remainder of Line 4 contains the core of the algorithm:
we have to prove that the found block is still contiguous, using that tmp = curr +

i * 1024 by the if-test. Fig. 5 depicts the proof obligation, using primed variables
for the pre-state of the loop body. The figure also contains the idea of the proof:
on the right-hand side of the equation from Line 4, we split off one chunk at
the end of the list by (9); on the left-hand side, we split the contiguous block at
address tmp’. This strategy can be expressed by 8 lines of tactics.
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Fig. 5. Extending the Found Block with a New Chunk

The final proof obligation concerns the returning of an allocated memory
block after the inner loop. Here, the assignment *prev=tmp splices out a sequence
of chunks (Fig. 1). Since that assignment matches the idiom from §2.2, we can
use (17) to perform the split of the list, after a case distinction by (18). Then,
Line 4 of the invariant yields the memory layout of the post-condition. The
argument takes 30 lines of tactics for both cases together; the application of the
theorems reflects the informal manipulation of pointer diagrams in all steps.

4.3 Deallocation

The free routine takes a block of memory and integrates it into the allocator’s
free list (Fig. 1). Its specification, again translated from [13], requires that the
free list is intact and allocated and that the block’s size is a multiple of 1kb.

M I free-list-cover ctx M ‖ block a size ∧ free-list-inv ctx M ∧
0 < size ∧ 1024 udvd size ∧ aligned a 1024

It guarantees that the passed block has been merged into the free list.

M I free-list-cover ctx M ∧ free-list-inv ctx M

The function free consists of two loops. The first one establishes the pointer
structure within the passed memory block, the second splices the created list
into the free list at the correct position.

The first loop uses an iterator-like construct to establish the list structure
within the raw memory block (§2.3; Fig. 4). We have developed a thin wrapper
around Isabelle’s Word library [21] to enable the idiomatic reasoning about ini-
tializing and advancing iterators. The proof that the overall block maintains the
shape of Fig. 4, i.e. an initial list of elements with a trailing raw block, can be
proven along the graphical intuition, by using essentially the same steps as the
derivation from Fig. 5 in §4.2.

The invariant of the second loop is again typical of a search loop (§2.2, §3.4):

1 ∃B. M I free-list-cover ctx M ‖ cover a p M ‖ node p ‖ a ‖ size ‖ p ‖ prev ‖ curr ∧
2 free-list-inv ctx M ∧ 0 < size ∧ 1024 udvd size ∧ aligned a 1024 ∧ aligned p 1024 ∧
3 cover a p M ‖ node p = block a (p ⊕ 1024 	 a) ∧
4 nodes a p B M ∧ sorted B ∧ (∀ b ∈ set B. a ≤ b ∧ b < p ∧ aligned b 1024) ∧
5 follow-iter prev curr�&kfree-list� kfree-list nill M ∧
6 (prev =�&kfree-list� ∨ prev < a) ∧ a ≤ p

Lines 1–2 maintain the information of the pre-condition; Lines 3–4 keep the
result of the first loop (Fig. 4). Line 5 captures curr as a follow iterator (§3.4)
for the search, while Line 6 characterizes the nodes that curr has already passed
as having strictly smaller start addresses that a.

Since the loop matches the idiom (Fig. 2 (b)), its correctness proof follows the
reasoning already discussed for alloc in §4.2: (15) and (16) yield initialization
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and preservation; Line 6 follows from the while-test. After the loop, the new
sequence of nodes a. . . p is spliced into the free list before curr, again making use
of (17) and (18) to split the overall list structure before the pointer updates.

5 Related Work

To the best of the author’s knowledge, the proposal of developing background
theories by formalizing idioms and coding patterns has not been discussed previ-
ously. We therefore focus on similar case studies and on approaches to structuring
interactive proofs beyond the discharging of generated verification conditions.

Tuch et al. [10, 13] give two proofs of the L4 memory allocator, one using
separation logic and one using a typed view on the raw memory. Their develop-
ment shows the intricacy of reasoning about byte-addressed finite memory. Our
own proof clearly benefits from Isabelle’s Word library [21] contributed by the
L4 verification project. In his analysis [11, §6.6], Tuch suggests that with further
experience in similar proofs, a set of re-usable libraries could be constructed to
aid in future developments. He proposes to collect lemmas that have been found
useful, and to improve automation for separation logic assertions. Differing from
ours, his approach is thus goal-directed, starting from the verification conditions.
Although proof sizes in different systems are not directly comparable, it is inter-
esting that our proof is significantly shorter (by a factor of 2) even though Tuch
et al. prove only the immediately necessary theorems.

Marti et al. [22] verify the heap manager of the Topsy operating system,
which is also based on an untyped singly-linked list. The paper focuses on the
developed verification environment and therefore the actual proof is discussed
only at the level of the defined predicates and the function specifications. An
instance of forward reasoning appears in [22, §4.2], where a central theorem for
compacting two list nodes is derived beforehand and is shown to apply to an
example Hoare triple of an expected format. The structure of the greater part
of the proof (≈4500 lines of Coq) is not analyzed further.

Böhme et al. [4] investigate the advantages of interactive theorem proving for
software verification. In [4, §1.3], they observe that the introduction of suitable
abstractions with well-developed theories can make interactive proofs feasible
where automated provers fail because they have to unfold the definitions. They
demonstrate the claim by a case study on an implementation of circular singly-
linked lists, but do not formulate strategies to develop general theories.

Concerning the question of structuring interactive correctness proofs, Myreen
[23, §5.2] verifies Cheney’s garbage collector using a refinement argument. The
first two layers capture the specification and abstract implementation of copying
garbage collection; they can thus be read as the common structure of different
collectors. Our proposal of formalizing idioms addresses, on the other hand,
cross-cutting issues of different algorithms. McCreight’s proof [24] of the same
algorithm introduces carefully chosen separation logic predicates that reflect the
structure of pointer diagrams, and diagrammatic arguments are used to illustrate
the proof strategies. However, their translation into a proof script involves a
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substantial amount of technical formula manipulation [24, §6.3.3, p. 122, §6.4.3].
Both the defined predicates and the proof strategies are specific to the algorithm.

A different approach to interactive proving has been proposed by Tuerk [25]
and Chlipala [3]. They use a restricted form of separation logic, inspired by
Smallfoot [26]. Besides pure assertions, verification conditions then consist of
implications between iterated spatial conjunctions, which are cancelled syntac-
tically one-by-one, possibly using user-supplied unfolding rules. This process
reduces the verification conditions to pure assertions, which are solved mostly
automatically by the built-in tactics of the interactive provers.

6 Conclusion

Interactive software verification enables the development of theories indepen-
dently of concrete verification conditions, with a view to making proofs readable,
maintainable, and possibly re-usable. This paper has proposed to structure such
theories around the idioms and coding patterns employed by developers, and to
formulate the definitions and theorems to reflect informal arguments about the
code, e.g. in the form of pointer diagrams.

We have demonstrated this strategy using the frequent case of singly-linked
lists. Besides their basic structure (§3.2), we have introduced the higher-level
idioms of iterators (§3.3) for read-only searches and follow iterators (§3.4) for
searching and modifying lists. The developed library is formulated as an Isabelle
locale and can be instantiated for different concrete list structures. We have ap-
plied the library to the untyped free list of the L4 memory allocator [10, 13]. It
was interesting to find during the development that the reasoning patterns em-
bodied in the library made the overall proof [19] much more straightforward than
the previous partial attempt [12], even though several additional points, such as
alignment and the initialization of allocated memory had to be considered.

The proposed strategy has shown several benefits: first, all verification con-
ditions regarding the list structure were solved by library theorems, and their
application in each case reflected informal arguments by pointer diagrams. The
chosen theorem names preserve this link in the proof script [19], thus contribut-
ing to its maintainability. Second, the analogies between the allocator’s routines
could be exploited by having a common ground for expressing them (§4.2, §4.3).
Third, although no specific effort was made, the script is substantially smaller
than the original one [13, 11], which can be attributed to the simple application
of library theorems due to their matching the coding idioms.

Finally, the library’s genericity has enabled its re-use for the work queues of
the Schorr-Waite graph marking algorithm [15] and Cheney’s collector [27, 28].
Both algorithms use a non-standard successor link, involving a case-distinction
and pointer arithmetic, respectively. The correctness proofs are nevertheless cov-
ered by the library theorems (§3.2). Between the two algorithms, we have re-used
a theory of object graphs [15, §5.1] that is also structured around expected com-
mon manipulations. This further example suggests that the strategies proposed
now will be applicable beyond the chosen case study.
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A Source Code

void *alloc(unsigned int size) {
void **prev = &kfree_list;
void *curr = kfree_list;
while (curr != null) {
void *tmp = *(void **)curr;
unsigned int i = 1;
while (tmp != null &&

i < size / 1024) {
if (tmp != curr + i * 1024) {

tmp = null;
} else {

tmp = *(void**)tmp;
i++;

}
}
if (tmp != null) {
*prev = tmp;
zero_mem(curr,size);
return curr;

}
prev = (void**)curr;
curr = *(void**)curr;

}
return null;

}

void free(void *a, unsigned int size) {
void *p;
void **prev;
void *curr;
p = a;
while (p < a + (size - 1024)) {
*(void**)p = p + 1024;
p = *(void**)p;

}
prev = &kfree_list;
curr = kfree_list;
while (curr != null && (a > curr)) {
prev = (void**)curr;
curr = *(void**)curr;

}
*prev = a;
*(void**)p = curr;

}

void zero_mem(void *p, unsigned int n) {
unsigned int i = (unsigned int)0;
while (i < n / 4) {

*((int*)p+i) = 0;
i++;

}
}
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Abstract. We present a link between the interactive proof assistant
Isabelle/HOL and the Spark/Ada tool suite for the verification of high-
integrity software. Using this link, we can tackle verification problems
that are beyond reach of the proof tools currently available for Spark. To
demonstrate that our methodology is suitable for real-world applications,
we show how it can be used to verify an efficient library for big numbers.
This library is then used as a basis for an implementation of the RSA
public-key encryption algorithm in Spark/Ada.

1 Introduction

Software for security-critical applications, such as a data encryption algorithm in
a virtual private network (VPN) gateway, needs to be particularly trustworthy.
If the encryption algorithm does not work as specified, data transmitted over
the network may be decrypted or manipulated by an adversary. Moreover, flaws
in the implementation may also make the VPN gateway vulnerable to overflows,
enabling an attacker to obtain access to the system, or cause the whole gateway
to crash. If such a gateway is part of the VPN of a bank, implementation flaws
can easily cause considerable financial damage. For that reason, there is a strong
economic motivation to avoid bugs in software for such application areas.

Since software controls more and more areas of daily life, software bugs have re-
ceived increasing attention. In 2006, a bug was introduced into the key generation
tool of OpenSSL that was part of the Debian distribution. As a consequence of
this bug, the random number generator for producing the keys no longer worked
properly, making the generated keys easily predictable and therefore insecure
[6]. This bug went unnoticed for about two years.

Although it is commonly accepted that the only way to make sure that software
conforms to its specification is to formally prove its correctness, it was not until
recently that verification tools have reached a sufficient level of maturity to
be industrially applicable. A prominent example of such a tool is the Spark
system [2]. It is developed by Altran Praxis and is widely used in industry,
notably in the area of avionics. Spark is currently being used to develop the
UK’s next-generation air traffic control system iFACTS, and has already been
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successfully applied to the verification of a biometric software system in the
context of the Tokeneer project funded by the NSA [3]. The Spark system
analyzes programs written in a subset of the Ada language, and generates logical
formulae that need to hold in order for the programs to be correct. Since it
is undecidable in general whether a program meets its specification, not all of
these generated formulae can be proved automatically. In this paper, we therefore
present the HOL-Spark verification environment that couples the Spark system
with the interactive proof assistant Isabelle/HOL [13].

Spark imposes a number of restrictions on the programmer to ensure that pro-
grams are well-structured and thus more easily verifiable. Pointers and GOTOs
are banned from Spark programs, and for each Spark procedure, the program-
mer must declare the intended direction of dataflow. This may sound cumber-
some, but eventually leads to code of much higher quality. In standard program-
ming languages, requirements on input parameters or promises about output
parameters of procedures, also called pre- and postconditions, such as “i must
be smaller than the length of the array A” or “x will always be greater than 1”
are usually written as comments in the program, if at all. These comments are
not automatically checked, and often they are wrong, for example when a pro-
grammer modified a piece of code but forgot to ensure that the comment still
reflects the actual behaviour of the code. Spark allows the programmer to write
down pre- and postconditions of a procedure as logical formulae, and a link be-
tween these conditions and the code is provided by a formal correctness proof
of the procedure, which makes it a lot easier to detect missing requirements.
Moreover, the obligation to develop the code in parallel with its specification
and correctness proof facilitates the production of code that immediately works
as expected, without spending hours on testing and bug fixing. Having a formal
correctness proof of a program also makes it easier for the programmer to ensure
that changes do not break important properties of the code.

The rest of this paper is structured as follows. In §2, we give some background
information about Spark and our verification tool chain. In §3, we illustrate the
use of our verification environment with a small example. As a larger application,
we discuss the verification of a big number library in §4. A brief overview of
related work is given in §5. Finally, §6 contains an evaluation of our approach
and an outlook to possible future work.

2 Basic Concepts

2.1 Spark

Spark [2] is a subset of the Ada language that has been designed to allow veri-
fication of high-integrity software. It is missing certain features of Ada that can
make programs difficult to verify, such as access types, dynamic data structures,
and recursion. Spark allows to prove absence of runtime exceptions, as well as
partial correctness using pre- and postconditions. Loops can be annotated with
invariants, and each procedure must have a dataflow annotation, specifying the
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dependencies of the output parameters on the input parameters of the proce-
dure. Since Spark annotations are just written as comments, Spark programs
can be compiled by an ordinary Ada compiler such as GNAT. Spark comes with
a number of tools, notably the Examiner that, given a Spark program as an
input, performs a dataflow analysis and generates verification conditions (VCs)
that must be proved in order for the program to be exception-free and partially
correct. The VCs generated by the Examiner are formulae expressed in a lan-
guage called FDL, which is first-order logic extended with arithmetic operators,
arrays, records, and enumeration types. For example, the FDL expression

for_all(i: integer, ((i >= min) and (i <= max)) ->

(element(a, [i]) = 0))

states that all elements of the array a with indices greater or equal to min and
smaller or equal to max are 0. VCs are processed by another Spark tool called
the Simplifier that either completely solves VCs or transforms them into simpler,
equivalent conditions. The latter VCs can then be processed using another tool
called the Proof Checker. While the Simplifier tries to prove VCs in a completely
automatic way, the Proof Checker requires user interaction, which enables it to
prove formulae that are beyond the scope of the Simplifier. The steps that are
required to manually prove a VC are recorded in a log file by the Proof Checker.
Finally, this log file, together with the output of the other Spark tools mentioned
above, is read by a tool called POGS (Proof ObliGation Summariser) that pro-
duces a table mentioning for each VC the method by which it has been proved.
In order to overcome the limitations of FDL and to express complex specifica-
tions, Spark allows the user to declare so-called proof functions. The desired
properties of such functions are described by postulating a set of rules that can
be used by the Simplifier and Proof Checker [2, §11.7]. An obvious drawback of
this approach is that incorrect rules can easily introduce inconsistencies.

2.2 HOL-Spark

The HOL-Spark verification environment, which is built on top of Isabelle’s
object logic HOL, is intended as an alternative to the Spark Proof Checker,
and improves on it in a number of ways. HOL-Spark allows Isabelle to directly
parse files generated by the Examiner and Simplifier, and provides a special
proof command to conduct proofs of VCs, which can make use of the full power
of Isabelle’s rich collection of proof methods. Proofs can be conducted using
Isabelle’s graphical user interface, which makes it easy to navigate through larger
proof scripts. Moreover, proof functions can be introduced in a definitional way,
for example by using Isabelle’s package for recursive functions, rather than by
just stating their properties as axioms, which avoids introducing inconsistencies.

Figure 1 shows the integration of HOL-Spark into the tool chain for the verifica-
tion of Spark programs. HOL-Spark processes declarations (*.fdl) and rules
(*.rls) produced by the Examiner, as well as simplified VCs (*.siv) produced
by the Spark Simplifier. Alternatively, the original unsimplified VCs (*.vcg)
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Source files
(*.ads, *.adb)

Examiner

FDL declarations
(*.fdl)

VCs
(*.vcg)

Rules
(*.rls)

Simplifier

Simplified VCs
(*.siv)

HOL-Spark
Theory files

(*.thy)

Proof review files
(*.prv)

POGS

Summary file
(*.sum)

Fig. 1. Spark program verification tool chain

produced by the Examiner can be used as well. Processing of the Spark files
is triggered by an Isabelle theory file (*.thy), which also contains the proofs
for the VCs contained in the *.siv or *.vcg files. Once that all verification
conditions have been successfully proved, Isabelle generates a proof review file
(*.prv) notifying the POGS tool of the VCs that have been discharged.

3 Verifying an Example Program

In this section, we explain the usage of the Spark verification environment by
proving the correctness of an example program for computing the greatest com-
mon divisor of two natural numbers shown in Fig. 2, which has been taken from
the book about Spark by Barnes [2, §11.6]. In order to specify that the Spark
procedure G C D behaves like its mathematical counterpart, Barnes introduces a
proof function Gcd in the package specification.
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package Greatest_Common_Divisor

is
--# function Gcd (A, B : Natural) return Natural;

procedure G_C_D (M, N : in Natural; G : out Natural);

--# derives G from M, N;

--# post G = Gcd (M, N);

end Greatest_Common_Divisor;

package body Greatest_Common_Divisor

is
procedure G_C_D (M, N : in Natural; G : out Natural)

is
C, D, R : Natural;

begin
C := M; D := N;

while D /= 0

--# assert Gcd (C, D) = Gcd (M, N);

loop
R := C mod D;

C := D; D := R;

end loop;
G := C;

end G_C_D;

end Greatest_Common_Divisor;

Fig. 2. Spark program for computing the greatest common divisor

3.1 Importing Spark VCs into Isabelle

Invoking the Examiner and Simplifier on this program yields a file g c d.siv con-
taining the simplified VCs, as well as files g c d.fdl and g c d.rls, containing
FDL declarations and rules, respectively. For G C D the Examiner generates nine
VCs, seven of which are proved automatically by the Simplifier. We now show
how to prove the remaining two VCs interactively using HOL-Spark. For this
purpose, we create a theory Greatest Common Divisor, which is shown in Fig. 3.
Each proof function occurring in the specification of a Spark program must be
linked with a corresponding Isabelle function. This is accomplished by the com-
mand spark proof functions, which expects a list of equations name = term,
where name is the name of the proof function and term is the corresponding
Isabelle term. In the case of gcd, both the Spark proof function and its Isabelle
counterpart happen to have the same name. Isabelle checks that the type of the
term linked with a proof function matches the type of the function declared in
the *.fdl file. We now instruct Isabelle to open a new verification environment
and load a set of VCs. This is done using the command spark open, which
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theory Greatest_Common_Divisor

imports SPARK GCD

begin

spark proof functions
gcd = "gcd :: int ⇒ int ⇒ int"

spark open "out/greatest_common_divisor/g_c_d.siv"

spark vc procedure_g_c_d_4

using ‘0 < d‘ ‘gcd c d = gcd m n‘

by (simp add: gcd_non_0_int)

spark vc procedure_g_c_d_9

using ‘0 ≤ c‘ ‘gcd c 0 = gcd m n‘

by simp

spark end

end

Fig. 3. Correctness proof for the greatest common divisor program

must be given the name of a *.siv or *.vcg file as an argument. Behind the
scenes, Isabelle parses this file and the corresponding *.fdl and *.rls files, and
converts the VCs to Isabelle terms.

3.2 Proving the VCs

The two open VCs are procedure_g_c_d_4 and procedure_g_c_d_9, both of which
contain the gcd proof function that the Simplifier does not know anything about.
The proof of a particular VC can be started with the spark vc command. The
VC procedure_g_c_d_4 requires us to prove that the gcd of d and the remainder
of c and d is equal to the gcd of the original input values m and n, which is the
invariant of the procedure. This is a consequence of the following theorem

0 < y =⇒ gcd x y = gcd y (x mod y)

The VC procedure_g_c_d_9 says that if the loop invariant holds when we exit
the loop, which means that d = 0, then the postcondition of the procedure will
hold as well. To prove this, we observe that gcd c 0 = c for non-negative c.
This concludes the proofs of the open VCs, and hence the Spark verification
environment can be closed using the command spark end. This command checks
that all VCs have been proved and issues an error message otherwise. Moreover,
Isabelle checks that there is no open Spark verification environment when the
final end command of a theory is encountered.
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4 A verified big number library

We will now apply the HOL-Spark environment to the verification of a library
for big numbers. Libraries of this kind form an indispensable basis of algorithms
for public key cryptography such as RSA or elliptic curves, as implemented
in libraries like OpenSSL. Since cryptographic algorithms involve numbers of
considerable size, for example 256 bytes in the case of RSA, or 40 bytes in the
case of elliptic curves, it is important for arithmetic operations to be performed
as efficiently as possible.

4.1 Introduction to modular multiplication

An operation that is central to many cryptographic algorithms is the computa-
tion of x · y modm, which is called modular multiplication. An obvious way of
implementing this operation is to apply the standard multiplication algorithm,
followed by division. Since division is one of the most complex operations on big
numbers, this approach would not only be very difficult to implement and verify,
but also computationally expensive. Therefore, big number libraries often use a
technique called Montgomery multiplication [10, §14.3.2]. We can think of a big
number x as an array of words x0, . . . , xn−1, where 0 ≤ xi and xi < b, and

x =
∑

0≤i<n

bi · xi

In implementations, b will usually be a power of 2. For two big numbers x and
y, Montgomery multiplication (denoted by x⊗ y) yields

x⊗ y = x · y ·R−1 modm

where R = bn, and R−1 denotes the multiplicative inverse of R modulo m. Now,
in order to compute the product of two numbers x and y modulo m, we first
compute the residues x̃ and ỹ of these numbers, where x̃ = x ·Rmodm and
ỹ likewise. A residue x̃ can be computed by a Montgomery multiplication of x
with R2 modm, since

x⊗ (R2 modm) = x ·R2 ·R−1 modm = x ·Rmodm

We then have that

x̃⊗ ỹ = x ·R · y ·R ·R−1 modm = x · y ·Rmodm = x̃ · y

The desired result of the modular multiplication can be obtained by performing
a Montgomery multiplication of x̃ · y with 1, since

x̃ · y ⊗ 1 = x · y ·R · 1 ·R−1 modm = x · y modm

Before we come to the implementation and verification of Montgomery multipli-
cation, we try to give an intuitive explanation of how the algorithm works. Our
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a← 0
for i = n− 1 downto 0 do
a← a · b+ xi · y

end for

a← 0
for i = 0 to n− 1 do
a← (a+ xi · y)/b

end for

0 · 10 =
0 +

4 · 789 3156 =

3156 · 10 =
31560 +

5 · 789 3945 =

35505 · 10 =
355050 +

6 · 789 4734 =

359784

0 +
6 · 789 4734 =

4734 / 10 =

473.4 +
5 · 789 3945 =

4418.4 / 10 =

441.84 +
4 · 789 3156 =

3597.84 / 10 =

359.784

Fig. 4. Two variants of multiplication

exposition is inspired by a note due to Kochanski [9]. As a running example, we
take b = 10 and assume we would like to multiply 456 with 789. Fig. 4 shows
two multiplication algorithms in pseudocode notation, and the tables below the
algorithms illustrate the computation steps performed by them. The algorithm
on the left is the usual “school multiplication”: the multiplier x is processed from
left to right, i.e. starting with the most significant digit, and the accumulator a
is shifted to the left, i.e. multiplied with 10 in each step. In contrast, the algo-
rithm on the right processes the multiplier from right to left, i.e. starting with
the least significant digit, and shifts the accumulator to the right, i.e. divides it
by 10. Consequently, the algorithm on the right computes x · y ·R−1 instead of
x ·y. We now explain how the algorithm on the right can be modified to perform
modular multiplication. It might seem that the algorithm requires computations
involving floating point numbers, since a+xi · y is not necessarily divisible by b.
However, when working modulo m, this can easily be fixed by adding a suitable
multiple of m to a + xi · y, which does not change the result modulo m. The
factor by which we have to multiply m is u = (a0 + xi · y0) ·m′ mod b, where
m′ = −m−10 mod b is the additive inverse of the multiplicative inverse of m0

modulo b, i.e. (1 +m′ ·m0)mod b = 0 and 0 ≤ m′ < b. The inverse only exists if
m0 and b are coprime, i.e. gcd(m0, b) = 1, which is the case in practical applica-
tions, since b will usually be a power of 2 and m will be a large prime number.
Note that in order to compute u, we only have to consider the least significant
words a0, y0 and m0 of the numbers a, y and m, respectively. It is easy to see
that a + xi · y + u ·m is divisible by b, since

(a + xi · y + u ·m) mod b = (a0 + xi · y0 + (a0 + xi · y0) ·m′ ·m0) mod b =
(a0 + xi · y0) · (1 + m′ ·m0) mod b = 0

Fig. 5 shows the pseudocode for the Montgomery multiplication algorithm, which
employs the ideas described above. As for the other algorithms, we also include
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a← 0
for i = 0 to n− 1 do
u← (a0 + xi · y0) ·m′ mod b
a← (a+ xi · y + u ·m)/b

end for
if a ≥ m then
a← a−m

end if

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =

1263 +
5 · 789 3945 =

5208 +
6 · 987 5922 =

11130 / 10 =

1113 +
4 · 789 3156 =

4269 +
3 · 987 2961 =

7230 / 10 =

723

Fig. 5. Montgomery multiplication algorithm

a table illustrating the computation. We again multiply the numbers 456 and
789, and use 987 as a modulus. Note that m′ = 7, since (1 + 7 · 7) mod 10 = 0.
The result of the multiplication is easily seen to be correct, since

723 · 1000 mod 987 = 516 = 456 · 789 mod 987

After termination of the loop, it may be necessary to subtract m from a, since
a may not be smaller than m, although it will always be smaller than 2 ·m− 1.

4.2 Overview of the big number library

In this section, we give an overview of the big number library and its interface. We
have chosen to represent big numbers as unconstrained arrays of 64-bit words,
where the array indices can range over the natural numbers. All procedures
in the big number library operate on segments of unconstrained arrays that are
selected by specifying the first and last index of the segment. In situations where
a procedure operates on several segments, all of which must have the same length,
the last index is usually omitted. The prelude of the Bignum library containing
the basic declarations is shown in Fig. 6. The big number library provides the
following operations:

– Basic big number operations: doubling, subtracting, and comparing
– Precomputation of the values R2 modm and −m−10 mod b
– Montgomery multiplication
– Exponentiation using Montgomery multiplication

The value R2 modm =
((

2k
)n)2

modm = 22·k·n modm can be computed by
initializing an accumulator with 1 and applying the doubling operation to it 2·k·n
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package Bignum

is
Word_Size : constant := 64;

Base : constant := 2 ** Word_Size;

type Word is mod Base;

type Big_Int is array (Natural range <>) of Word;

--# function Num_Of_Big_Int (A: Big_Int; K, I: Natural)

--# return Universal_Integer;

--# function Num_Of_Boolean (B: Boolean)

--# return Universal_Integer;

--# function Inverse (M, X: Universal_Integer)

--# return Universal_Integer;

. . .
end Bignum;

Fig. 6. Prelude of the big number library

times. After each doubling step, we check whether a carry bit was produced or
the resulting number is greater or equal to m, in which case we have to subtract
m from the current value of the accumulator. The value −m−10 mod b can be
computed by a variant of Euclid’s algorithm shown in §3.

Since the specification of the big number operations will make use of constructs
that cannot be easily expressed with Spark’s annotation laguage, we have to
introduce a number of proof functions. First of all, we need a function that
abstracts a big number to a number in the mathematical sense. This function,
which is called Num Of Big Int, takes an array A, together with the first index
K and the length I of the segment representing the big number, and returns a
result of type Universal Integer. The Isabelle counterpart of this function is

num_of_big_int :: (int ⇒ int) ⇒ int ⇒ int ⇒ int

num_of_big_int A k i = (
∑

j = 0..<i. Basej * A (k + j))

An array with elements of type τ is represented by the function type int ⇒ τ

in Isabelle. Function num_of_big_int enjoys the following summation property

num_of_big_int A k (i + j) =

num_of_big_int A k i + Basei * num_of_big_int A (k + i) j

It is important to note that it would not have been adequate to choose Integer

instead of Universal Integer as a result type, since the former corresponds
to machine integers limited to a fixed size, whereas the latter corresponds to
the mathematical ones. When dealing with operations returning carry bits, it is
often useful to have a function for converting boolean values to numbers, where
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procedure Mont_Mult

(A : out Big_Int; A_First : in Natural; A_Last : in Natural;

X : in Big_Int; X_First : in Natural;

Y : in Big_Int; Y_First : in Natural;

M : in Big_Int; M_First : in Natural;

M_Inv : in Word);

--# derives
--# A from
--# A_First, A_Last, X, X_First, Y, Y_First, M, M_First, M_Inv;

--# pre
--# A_First in A’Range and A_Last in A’Range and
--# A_First < A_Last and
--# X_First in X’Range and
--# X_First + (A_Last - A_First) in X’Range and
--# . . .
--# Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) <

--# Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
--# 1 < Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
--# 1 + M_Inv * M (M_First) = 0;

--# post
--# Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) =

--# (Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *

--# Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *

--# Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

--# Base) ** (A_Last - A_First + 1)) mod
--# Num_Of_Big_Int (M, M_First, A_Last - A_First + 1);

Fig. 7. Specification of Montgomery multiplication

False and True are converted to 0 and 1, respectively. This is accomplished by
the proof function Num Of Boolean. Finally, for writing down the specification of
Montgomery multiplication, we also need the proof function Inverse denoting
the multiplicative inverse of X modulo M. It corresponds to the Isabelle function
minv::int ⇒ int ⇒ int, which has the following central property

coprime x m =⇒ 0 < x =⇒ 1 < m =⇒ x * minv m x mod m = 1

Moreover, if n’ is the multiplicative inverse of n modulo m, multiplying k by n’

is equivalent modulo m to dividing k by n, provided that k is divisible by n:

n * n’ mod m = 1 =⇒ k mod n = 0 =⇒ k div n mod m = k * n’ mod m

This property does not hold if k mod n 6= 0. For example, 5 * 13 mod 16 = 1

and 10 * 13 mod 16 = 2 = 10 div 5, but 9 * 13 mod 16 = 5 6= 1 = 9 div 5.
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4.3 Montgomery multiplication

The central operation in the big number library is Montgomery multiplication,
whose specification is shown in Fig. 7. It multiplies X with Y and stores the
result in A. The precondition requires the second factor Y to be smaller than
the modulus M. Due to the construction of the algorithm, the first factor X is
not required to be smaller than M in order for the result to be correct. For
technical reasons, A Last must be greater than A First, i.e. the length of the
big number must be at least 2. This is not a serious restriction, since big numbers
of length 1 would be rather pointless. Moreover, the modulus is required to be
greater than 1. The precondition 1 + M Inv * M (M First) = 0 states that
M Inv must be the additive inverse of the multiplicative inverse modulo b of the
least significant word of the modulus. The postcondition essentially states that
a = x · y · (b−1)n modm, where n is the length of the big numbers involved, and
a, x, y, m are the numbers represented by the arrays A, X, Y, M, respectively.

We are now ready to describe the implementation of Montgomery multiplication,
which is shown in Fig. 8. Recall that in each step of the Montgomery multiplica-
tion algorithm outlined in §4.1, we have to compute (a+ xi · y + u ·m)/b, where
xi and u are words, and a, y and m are big numbers. In our code for computing
this value, we use an optimization technique suggested by Myreen [12, §3.2],
which he used for the verification of an ARM machine code implementation of
Montgomery multiplication in HOL4. The idea is to perform the two multiplica-
tions of a word with a big number, as well as the two addition operations in one
single loop. The computation will be done in-place, meaning that the old value
of a will be overwritten with the new value. Moreover, since a + xi · y + u ·m
is divisible by b, we also shift the array containing the result by one word to
the left while performing the computation, which corresponds to a division by
b. This is accomplished by the procedure Add Mult Mult with postcondition

Num_Of_Big_Int (A~, A_First + 1, A_Last - A_First + 1) +

Num_Of_Big_int (Y, Y_First, A_Last - A_First + 1) * XI +

Num_Of_Big_int (M, M_First, A_Last - A_First + 1) * U +

Carry1~ + Base * Carry2~ =

Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +

Base ** (A_Last - A_First + 1) * (Carry1 + Base * Carry2)

The array representing (a + xi · y + u ·m)/b needs to be one word longer than
the length of y and m, although the final result of Montgomery multiplica-
tion will have the same length as the input numbers. We therefore store the
most significant word of a in a separate variable A MSW that is discarded at the
end of the computation. To simplify the implementation of the computation de-
scribed above, we first implement an auxiliary procedure Single Add Mult Mult

for computing aj + xi · yj + u ·mj , where all the operands involved are words.
Procedure Add Mult Mult just iteratively applies this auxiliary procedure to the
elements of the big numbers involved.

The assert annotation after the for command in Fig. 8 specifies the loop invari-
ant, which is
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procedure Mont_Mult

. . .
is

Carry : Boolean;

Carry1, Carry2, A_MSW, XI, U : Word;

begin
Initialize (A, A_First, A_Last); A_MSW := 0;

for I in Natural range A_First .. A_Last

--# assert . . .
loop

Carry1 := 0; Carry2 := 0;

XI := X (X_First + (I - A_First));

U := (A (A_First) + XI * Y (Y_First)) * M_Inv;

Single_Add_Mult_Mult

(A (A_First), XI, Y (Y_First),

M (M_First), U, Carry1, Carry2);

Add_Mult_Mult

(A, A_First, A_Last - 1,

Y, Y_First + 1, M, M_First + 1,

XI, U, Carry1, Carry2);

A (A_Last) := A_MSW + Carry1;

A_MSW := Carry2 + Word_Of_Boolean (A (A_Last) < Carry1);

end loop;

if A_MSW /= 0 or else
not Less (A, A_First, A_Last, M, M_First) then
Sub_Inplace (A, A_First, A_Last, M, M_First, Carry);

end if;
end Mont_Mult;

Fig. 8. Implementation of Montgomery multiplication

(Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +

Base ** (A_Last - A_First + 1) * A_MSW) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) =

(Num_Of_Big_Int (X, X_First, I - A_First) *

Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *

Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

Base) ** (I - A_First)) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +

Base ** (A_Last - A_First + 1) * A_MSW <

2 * Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) - 1

Using a more compact mathematical notation, this invariant can be written as

amodm = (x|j · y · b−j) modm ∧ a < 2 ·m− 1
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where x|j denotes the number represented by the segment of the array X of length
j = I− A First starting at index X First. The result a computed by the loop
can be greater or equal to the modulus, in which case we have to subtract the
modulus M in order to get the desired result. If A MSW 6= 0, this obviously means
that m < a. If A MSW = 0, we have to check whether m ≤ a Since a < 2 ·m− 1,
it suffices to subtract the modulus at most once [10, §14.3.2].

5 Related Work

The design of HOL-Spark is heavily inspired by the HOL-Boogie environment
by Böhme et al. [4] that links Isabelle with Microsoft’s Verifying C Compiler
(VCC) [5]. The Victor tool by Jackson [8], which is distributed with the latest
Spark release, uses a different approach. Victor is a command-line tool that can
parse files produced by the Spark tools, and can transform them into a variety of
formats, notably input files for SMT-solvers. Victor has recently been extended
to produce Isabelle theory files as well. The drawback of using Victor in connec-
tion with Isabelle is that theory files have to be regenerated whenever there is a
change in the files produced by Spark. This can happen quite frequently in the
development phase, for example when the user notices that some loop invariant
has to be strengthened, or the code has to be restructured in order to simplify
verification. The Frama-C system and its Jessie plugin [11] for the verification
of C code can generate VCs for a number of automatic and interactive provers,
including Coq and Isabelle.

A similar big number library written in a C-like language has been proved cor-
rect in Isabelle/HOL by Fischer [7] using a verification environment due to
Schirmer [14]. This library also includes division, but no Montgomery multi-
plication. Due to the use of linked lists with pointers instead of arrays, Fischer’s
formalization is a bit more complicated than ours. Apart from Myreen’s work
mentioned above, an implementation of Montgomery multiplication in MIPS
assembly has been formalized using Coq by Affeldt and Marti [1].

6 Conclusion

We have developed a verification environment for Spark, which is already part
of the Isabelle 2011 release, and have applied it to the verification of a big number
library. Our implementation of RSA based on this library reaches about 40% of
the speed of OpenSSL when compiled with the -O3 option on a 64-bit platform.
This is quite acceptable, given that OpenSSL uses highly-optimized and hand-
written assembly code. A further performance gain could be achieved by using
a sliding window exponentiation algorithm instead of the simpler square-and-
multiply technique. The library has 743 LOCs, 316 of which (i.e. 43%) are Spark
annotations. The length of the Isabelle files containing correctness proofs of
all procedures in the library, as well as necessary background theory, is 1753
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lines, of which 391 lines are taken up by the correctness proof for Montgomery
multiplication. Development of the library, including proofs, took about three
weeks. In the future, we plan to use the library as a basis for an implementation
of elliptic curve cryptography. A more long-term goal is to embed the Spark
semantics into Isabelle, to further increase the trustworthiness of VC generation.
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A RSA Encryption / Decryption

The implementation of the RSA encryption and decryption algorithm is shown
in Fig. 9. The procedure Crypt computes c = memodn, where c, m, e and n are
the numbers represented by the arrays C, M, E and N, respectively. When used for
encryption, c is the ciphertext, m the plaintext message, e the public exponent,
and n the modulus, where n is the product of two prime numbers p and q, and
e · d mod ((p − 1) · (q − 1)) = 1. The same procedure can be used to compute
the plaintext from an encrypted message, i.e. m = cd mod n. Before calling the
Montgomery exponentiation algorithm explained in Appendix B, the procedure
precomputes the values R2 mod n and −n−10 mod b. Since the exponentiation
algorithm requires several auxiliary arrays for storing intermediate results of the
computation, we define an array type of fixed length, which will be used for the
message M, the modulus N and the ciphertext C:

subtype Mod_Range is Natural range 0 .. 63;

subtype Mod_Type is Bignum.Big_Int (Mod_Range);

This allows the Crypt function to allocate memory for the auxiliary arrays,
rather than requiring the caller of Crypt to pass suitable arrays as arguments.
We have set the length of Mod Type to 64, meaning that it can contain values
with 64 · 64 = 4096 bits, which is sufficient for most practical applications.
However, the algorithm and its correctness proof would work equally well for
different lengths of Mod Type. Note that the length of the exponent E is still
unconstrained and need not be the same as the length of the modulus. Indeed,
it is quite common to choose public and private exponents that have a different
length.

B Exponentiation

The implementation of exponentiation using Montgomery multiplication is shown
in Fig. 10. This procedure computes the result a = xemodm, where a, x, e and
m are the numbers represented by the arrays A, X, E and M, respectively. The
algorithm needs a number of auxiliary variables to store intermediate values.
These intermediate values are big numbers whose size is not known at compile
time, but depends on the size of the unconstrained arrays passed as arguments
to the procedure. Since Spark does not allow the dynamic allocation of memory
for data structures, these auxiliary variables need to be created by the caller,
and passed to the procedure as arguments, too. This is why Mont Exp has the
extra arguments Aux1, Aux2, and Aux3. The parameter RR must contain the big
number R2 modm, and 1 + M Inv ·m0 mod b = 0. We start by initializing Aux1

with the big number 1. The variable Aux3, which we use as an accumulator for
computing the result, is set to 1̃ = Rmodm using Mont Mult (see §4.1). More-
over, we store x̃ in Aux2. The algorithm uses the square-and-multiply approach.
It processes the exponent from the most significant bit to the least significant
bit. In each iteration Aux3 is squared, and the result stored in A. If the current
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procedure Crypt

(E : in Bignum.Big_Int;

N : in Mod_Type;

M : in Mod_Type;

C : out Mod_Type)

is
Aux1, Aux2, Aux3, RR : Mod_Type;

N_Inv : Types.Word32;

begin
Bignum.Size_Square_Mod

(N, N’First, N’Last, RR, RR’First);

N_Inv := Bignum.Word_Inverse (N (N’First));

Bignum.Mont_Exp

(C, C’First, C’Last,

M, M’First,

E, E’First, E’Last,

N, N’First,

Aux1, Aux1’First,

Aux2, Aux2’First,

Aux3, Aux3’First,

RR, RR’First,

N_Inv);

end Crypt;

Fig. 9. Implementation of RSA algorithm

bit of the exponent is set, A is multiplied with Aux2 (containing x̃), and the result
is stored in Aux3 again, otherwise A is just copied back to Aux3. The invariant
of the inner loop is

Num_Of_Big_Int (Aux1, Aux1_First, A_Last - A_First + 1) = 1 and
Num_Of_Big_Int (Aux2, Aux2_First, A_Last - A_First + 1) =

Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *

Base ** (A_Last - A_First + 1) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
Num_Of_Big_Int (Aux3, Aux3_First, A_Last - A_First + 1) =

Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) **

(Num_Of_Big_Int (E, I + 1, E_Last - I) * 2 ** (Word_Size - 1 - J) +

Universal_Integer (E (I)) / 2 ** (J + 1)) *

Base ** (A_Last - A_First + 1) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1)

After termination of the loop, Aux3 is converted from “Montgomery format” to
the “normal format” again by Montgomery-multiplying it with 1 and storing the
result in A.
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procedure Mont_Exp

(A : out Big_Int; A_First : in Natural; A_Last : in Natural;

X : in Big_Int; X_First : in Natural;

E : in Big_Int; E_First : in Natural; E_Last : in Natural;

M : in Big_Int; M_First : in Natural;

Aux1 : out Big_Int; Aux1_First : in Natural;

. . .
RR : in Big_Int; RR_First : in Natural;

M_Inv : in Word)

is
begin

Initialize (Aux1, Aux1_First, Aux1_First + (A_Last - A_First));

Aux1 (Aux1_First) := 1;

Mont_Mult

(Aux3, Aux3_First, Aux3_First + (A_Last - A_First),

RR, RR_First, Aux1, Aux1_First, M, M_First, M_Inv);

Mont_Mult

(Aux2, Aux2_First, Aux2_First + (A_Last - A_First),

X, X_First, RR, RR_First, M, M_First, M_Inv);

for I in reverse Natural range E_First .. E_Last

loop
for J in reverse Natural range 0 .. Word_Size - 1

--# assert . . .
loop

Mont_Mult

(A, A_First, A_Last,

Aux3, Aux3_First, Aux3, Aux3_First,

M, M_First, M_Inv);

if (E (I) and 2 ** J) /= 0 then
Mont_Mult

(Aux3, Aux3_First, Aux3_First + (A_Last - A_First),

A, A_First, Aux2, Aux2_First,

M, M_First, M_Inv);

else
Copy (A, A_First, A_Last, Aux3, Aux3_First);

end if;
end loop;

end loop;

Mont_Mult

(A, A_First, A_Last,

Aux3, Aux3_First, Aux1, Aux1_First, M, M_First, M_Inv);

end Mont_Exp;

Fig. 10. Implementation of exponentiation
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Abstract. Formal methods are making their way into the development
of safety-critical systems. In this paper, we describe a case study where
a simple 2oo3 voting scheme for a shutdown system was veri�ed using
two bounded model checking tools, CBMC and EBMC. The system rep-
resents Systematic Capability level 3 according to IEC 61508 ed2.0. The
veri�cation process was based on requirements and pseudo code, and
involved verifying C and Verilog code implementing the pseudo code.
The results suggest that the tools were suitable for the task, but require
considerable training to reach productive use for code embedded in in-
dustrial equipment. We also identi�ed some issues in the development
process that could be streamlined with the use of more formal veri�ca-
tion methods. Towards the end of the paper, we discuss the issues we
found and how to address them in a practical setting.

1 Introduction

Companies developing safety-critical systems must balance between safety re-
quirements imposed by standards and productivity requirements. On the one
hand, the higher the safety integrity requirements, the more time and e�ort
are needed for validation and veri�cation activities. On the other hand, com-
panies producing less safety-critical systems often face �erce competition and
are required to put more emphasis on the overall e�ciency of the development
process.

Certi�cation is another driving force in the �eld. Many companies are try-
ing to get their products certi�ed in order to help marketing e�orts. The new
machinery directive in the EU, for instance, is still based on self-declaration in
the case of most type of machines; the manufacturer labels the product with the
�CE� marking without formal type examination. However, certi�cation by an
independent assessment organization may still be required by customers and/or
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for marketing reasons. It is also seen as an important step if an accident should
occur and investigation of the development practices takes place.

IEC 61508 [15] is a basic standard on functional safety; a new edition 2 of
the standard was released in April 2010. The standard classi�es safety-critical
systems into four Safety Integrity Levels (SILs), SIL 4 corresponding to the most
critical and SIL 1 the least critical type of system. The standard presents meth-
ods used for the veri�cation and validation of safety-critical hardware and soft-
ware. For each SIL level, there is a set of Highly Recommended, Recommended
and Not Recommended methods. In addition, for the use of some methods the
standard does not indicate any recommendation on certain SIL levels.

Systems can be composed of elements and subsystems having a predeter-
mined Systematic Capability (SC) on the scale 1-4 corresponding to the SIL
level of the whole system. For example, SIL 3 level systems can be composed of
elements having SC 3 or 4 when used according to the instructions given in the
elements' safety manuals. IEC 61508 is not harmonized, i.e. it does not ful�ll the
requirements of the European directives as such, but is often referred to by other,
harmonized, standards (such as EN ISO 13849-1 and EN 62061) in relation to
requirements imposed on the development of safety-critical systems.

Formal methods are considered an important technology in the development
of safety-critical systems. While the scalability and usability of tools still pose
challenges in the development of non-safety-critical systems, safety-critical sys-
tems are somewhat di�erent in this respect. On higher SIL/SC levels there are
fewer productivity constraints and perhaps more time to learn new techniques
that can help in validation and veri�cation e�orts. Moreover, safety-critical sys-
tems should be kept rather simple in order to limit the needed veri�cation and
validation activities. Thus, in spite of the scalability problems, it it often fea-
sible to prove correct at least some parts of the system using formal methods.
Moreover, formal methods are well represented in the IEC 61508 standard for
developing high SIL level systems. They can also be used on lower SIL levels to
replace some less formal techniques, such as certain types of testing.

Nevertheless, there have been major impediments in using formal methods.
Performance of the old tools and the computing power available was too limited
in order to solve real life problems. Moreover, special expertise was required
to use the tools. Nowadays, there is evidence in the literature that new tools
can solve practical problems given the increased computing resources available.
Unfortunately, however, there is still lack of user experience reports that would
discuss the required expertise to use the modern tools.

Towards these ends, we describe a case study where we experimented with a
formal veri�cation technology in an industrial case study. The case study subject
was a simple 2oo3 (2-out-of-3) voting scheme used for redundancy in a SC 3
level shutdown system. The system development is being done according to the
IEC 61508 standard and certi�cation is being conducted by an independent
organization.

In the case study we treat a typical industrial development where pseudo-
code (or programming language code in, e.g., C) is �rst written and shown
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correct relative to requirements of the module under development. This is then
handed o� to a separate development team as the basis of a hardware or �rmware
design in a low-level hardware design language such as Verilog or VHDL. This
too must be shown correct relative to (often more detailed) requirements. The
main practical tasks are (1) to ensure that the high- and low-level properties
checked actually express the needed requirements and are easy to write, (2) to
facilitate verifying the pseudo-code level relative to the properties, and (3) to
similarly show that the chip design satis�es the needed properties, while showing
consistency with the upper level solution.

For veri�cation we used two bounded model checking tools, CBMC and
EBMC [6]. Model checking as a technology does not require as high a level
of expertise as, for instance, theorem proving. Moreover, these tools were easily
available and supported the input formats we were able to work with. In addi-
tion, they support the existing development process and no major changes in
the work �ow are required.

While the standard does not require the use of formal veri�cation in the
case of this particular system, formal veri�cation can complement less formal
veri�cation methods, such as testing and simulation, and somewhat ease the
certi�cation process. Moreover, if the development process could be changed in
the future to better take advantage of the formal veri�cation technology, some
of the less formal techniques could possibly be replaced with it.

Since the veri�ed system is very simple, the focus of this paper is on reporting
experiences in using the veri�cation tools in the particular industrial context of
safety-critical systems development rather than in the veri�cation technology it-
self. The results of the case study suggest that while suitable tools might be hard
to �nd, together with the process changes, they could provide better evidence
for the correctness of the system. Should it be possible to replace some informal
techniques with more formal ones, productivity gains could also be achieved.
Nevertheless, the e�cient use of model checking tools requires expertise, so con-
siderable training may be needed in order to equip the developers with the skills
necessary to use such tools.

The structure of the paper is as follows: In Section 2 we present the back-
ground of the tools used in the case study and discuss related work on how
formal methods and related tools are used in various tasks in software and hard-
ware development. Section 3 introduces the case study. Due to con�dentiality
restrictions, some details of the shutdown system have been omitted. Finally,
the lessons learned from the case study are discussed in Section 4.

2 Model Checking Safety-Critical Systems

In this section, we �rst introduce the basic concepts related to model checking in
general and bounded model checking in particular. Then we move on to discuss
related work on how formal methods and related tools are used in various tasks
in software and hardware development.
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2.1 Model Checking and Bounded Model Checking

Model checking [8] is a formal veri�cation technique in which all possible execu-
tion paths of a model of a system or component are checked for a given property,
where the model must have a �nite number of possible states (although there
can be in�nite computations). The property to be checked is generally given in
some form of temporal logic [18]. This allows expressing assertions about the
�nal values of a module, invariants that should be true also at intermediate
stages, as well as assertions about, e.g., responsiveness of a system to requests
or stimuli. The model of the system is called a Kripke structure, and is a graph
with nodes that each represent a state of the system, and directed edges where
each represents an operation that moves the system from the source state to the
target.

The main problem with model checking is that the number of states in a
system can become unmanageably large. Thus model checking techniques are
intended to overcome this di�culty. Among the classic approaches are represent-
ing the states symbolically in data structures known as binary decision diagrams
(BDD's), and creating smaller "abstract" models that combine many states into
one (so that if the smaller model is shown correct for a desired property, the
original model is also guaranteed to be correct).

Model checking tools originally had their own notations for expressing the
models, e.g., in the SMV model checking tool [7]. The tool and its notation were
used either to show that a design of a key algorithm was correct, or code was
translated to the notation of the tool involved [11].

More recently, tools have been developed to directly take as input the code of
the component to be checked (e.g., in C or Java), and to use assert statements
to indicate at what point an assertion should be correct. In addition, the under-
lying technology of model checkers has changed: today it is common to translate
both the model (or code) and the assertions to a complex boolean formula, and
use a SAT (satis�ability) solver [19] or extended techniques called SMT [20] to
determine whether the formula can be made true for some assignment of values
to the variables in it. In fact, the formula constructed is equivalent to encoding
the execution of the model, and asserting the negation of the property we want.
Thus �nding a set of values for the variables in the formula is equivalent to
�nding a counterexample for the property, because it represents a computation
of the system that does not satisfy the desired property.

Both in order to create smaller models, and to ensure that any counterex-
ample execution paths are as short as possible, bounded model checking has
been used. In this approach, a bound is put on the length (number of states)
of paths that will be checked. Thus for some n, all possible paths of length up
to n are checked. If a counterexample is found, it can be analyzed to detect the
bug. While if none exists for paths up to n, the bound can be increased, until a
bound longer that any path in the program is reached, or the user decides that
longer paths can be ignored.

Modules to ensure safety-critical properties of industrial software often regu-
late control or repeatedly test whether shut-down is necessary. Such modules are
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generally limited in their state-space, and each round of application is bounded
in length. Thus bounded model checking is appropriate, and often can achieve
full veri�cation. Full model checkers, such as SATabs are appropriate for larger
programs, but, as noted on the home webpage of that tool [23], can only auto-
matically check for restricted properties such as array bounds, bu�er over�ows,
or built-in exceptions, because of the needed abstraction step in going from code
to a model.

In this work we show a case study where the computations are of a �xed
length at each activation of the module investigated, so many of the more com-
plex issues are irrelevant. We investigate whether tools for bounded model check-
ing are su�ciently robust and user-friendly to be practically used to verify and
increase the reliability of software or �rmware embedded in industrial equipment.

In this case study, we used two bounded model checkers, namely CBMC and
EBMC [6]. The former enables software model checking and supports ANSI-C
and C++ as input languages. The tool performs veri�cation by �rst unwinding
the code loops and then passing the results in an equational form to a decision
procedure (e.g., a SAT solver). In many cases, the tool can check that enough
unwinding is performed, and thus the complete state space is considered in the
analysis (sound veri�cation). If the formula that encodes the program unwindings
is satis�able, i.e., contains an invalid program path, then the tool will produce
a counterexample. There are also command-line options to limit the number of
times the loops are unwound or the number of program steps to be processed,
and to stop checking that enough unwinding is done; this allows using the tool
for bug hunting in cases where no useful bound exists and properties cannot be
proven correct. On the other hand, EBMC is a tool for hardware veri�cation sup-
porting input in Verilog and related formats. However, VHDL is not among the
supported input formats. Both tools are available in binary format for Windows,
Linux and MacOS.

2.2 Related Work

In the following, we describe some application examples of formal veri�cation
techniques in relation to software and hardware development. It is worth paying
attention to the way model checking is used and what kind of impact it has for
the development process and overall quality.

Björkman et al. [4] veri�ed stepwise shutdown logic in the nuclear domain
and used model checking in the traditional way: the design was converted to
a dedicated veri�cation model and the requirements in the speci�cation were
translated into logical formulae. They used a model checking tool for proving
that the veri�cation model satis�es the formulae. Obviously, this use of model
checking is rather demanding and laborious because of the model transforma-
tions needed, but it has some advantages as well. Already while constructing
formal models, many omissions and contradictions become clearly visible, and
larger systems can be veri�ed because irrelevant details can be omitted from the
abstract veri�cation model.
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The cited experiment shows the most valuable bene�t of formal methods
too. Because all of the modeled behavior is fully covered, no issue can hide
itself in the veri�cation model. However, the proof is valid only if the abstract
veri�cation model corresponds to the design and the formulae cover all of the
requirements. One of today's research challenge is to �nd new ways of applying
formal methods so that the artifacts used in proofs would be more closely related
to the speci�cation, design and implementation languages used in mainstream
software and hardware development; this would reduce the need for error-prone
manual transformations.

Even though formal methods may not be applicable always as such, they
can still be helpful. For example, testing can bene�t from their use. Angeletti
et al. [1] reported an experiment in the railway domain where bounded model
checking was used to semi-automatically generate test cases in order to gain full
coverage requested by the EN 50128 guidelines for the software development of
safety-critical systems at SIL 4 level.

In the experiment, the C code was augmented with failing assertions and
the CBMC tool was used to compute the values of input parameters for each
assertion to be reached. Obviously, the mere values of input parameters are
not enough for de�ning test cases; in order to be useful, the test case must
contain checks against the expected outputs. In our case study, such checks were
encoded directly as conditions in assertions and veri�ed on the �y. Unfortunately,
the paper by Angeletti et al. does not state directly how the expected values
were obtained and why on-the-�y veri�cation was not used. A system of a few
thousand lines of C code may be too large to be model checked, so the approach
we used in our case study may not have been applicable as such, and unlike in
our approach, test cases can be used to verify and validate the SUT in binary
form without the source code.

In theory, any model having operational semantics can be veri�ed by means
of model checking and state transition systems can be used to model many other
aspects of the systems than behavior in normal conditions. For example, there
is a special Statecharts variant called Safecharts for modeling safety issues and
their relations to functional properties [9].

In Safecharts there are special states for normal and defunct states for the
components of the system and transitions between them. Events associated with
those transitions model the breakdowns and reparations of the components.
When these special states and events are synchronized with the states and ac-
tions of the functional layer, the behavior of the system can be modeled and
formally veri�ed, not only in normal operation, but in those situations in which
parts of the system do not function properly [12]. This is very useful if the sys-
tem cannot reach a safe stable state without controlled operations. In aerospace
and nuclear domains this requirement is obvious, but also in the case of complex
and big machines there might be a need to shutdown slowly to prevent further
breakdowns.

In addition to facilitating testing, formal veri�cation can signi�cantly reduce
the need for testing. Kaivola et al. [16] used formal veri�cation as the primary
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validation vehicle for the execution cluster of the Intel Core i7 processor and
dropped most of the usual RTL (Register Transfer Language) simulations and
all coverage driven simulation validation. They concluded that veri�cation re-
quired approximately the same amount of work as traditional pre-silicon testing.
Although not zero, the number of bugs that escaped to silicon was lower than
for any other cluster.

In addition to describing how formal veri�cation could replace testing, Kaivola
et al. sketch some prerequisites for veri�cation to be applicable in practice. In
contexts where model checking can replace simulation-based testing, it can be
seen as a clever and e�ective way of conducting exhaustive simulation.

Nevertheless, even a company like Intel has taken quite some time to in-
troduce formal veri�cation into the development process. Most likely the story
began in 1994 when the Pentium FDIV bug was found [22] and seven years later
they reported that they had veri�ed the Pentium 4 �oating-point divider [17]. As
a pioneer in the �eld, Intel has made enormous investments in formal veri�cation
and for others, e�ort is likely far more moderate. Still, it may take considerable
e�ort to establish the con�dence needed to be able to supercede existing veri�-
cation methods with more formal ones. However, they can used to complement
the existing ones and provide diversity when needed.

The systems in the examples discussed above have very high integrity re-
quirements and two of them are also large from the veri�cation point of view.
For example, the execution cluster of i7 is responsible for the functional be-
havior of all of the more than 2700 distinct microinstructions. The majority of
safety-critical systems are much smaller and may not have such high integrity
requirements. Nonetheless, formal methods can be a feasible alternative for the
quality assurance of those because small veri�cation problems are not as labori-
ous to solve as it is generally thought and even small systems can have peculiar
and critical faults, which can be almost impossible to �nd by other means.

3 Case Study

We now present our case study on using model checking to verify a simple
element in a safety-critical system. In more detail, the goal was to use model
checking tools to verify the implementation of the 2oo3 voting scheme in a SC
3 level shutdown system. This voting scheme (also known as triple-modular
redundancy) is very popular in safety-critical systems because it provides a good
compromise between safety and availability. Since availability is an important
factor in industrial systems, such compromises are often searched for.

There are three distinct modules which receive the same input (from one, two
or three di�erent sensors) and shutdown is started when at least two out of three
modules suggest it. In this case, the design follows the idle current design, i.e. the
output is active when there is no need to shutdown the system. When at least two
out of three inputs are active, the output is also active. If only one or zero inputs
are active or the power is lost, the output should indicate a need to start the
shutdown procedure. In practice, each input is a Boolean value, one indicating
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a normal situation and zero indicating the need to shutdown the system. If two
or three of the input values equal zero, the voter unit outputs value zero and
the shutdown procedure begins. If only one input equals zero, the process can
continue (with a possible log message indicating some potential problem in the
corresponding module). Thus, the system is able to mask a fault in one of the
modules, allowing the system to continue its operation. The interested reader is
referred to [24, p. 132] for more elaborate discussion on this voting scheme.

3.1 Working with the Pseudo Code

In this case the development process is such that the basic requirements are
re�ned �rst and then translated into pseudo code. Typically, the pseudo code is
augmented with a short textual description that may specify some basic prop-
erties of the solution depicted as pseudo code. The pseudo code is then im-
plemented with a suitable concrete language; VHDL in case a programmable
hardware solution is preferred. The tests for the implementation are derived
from the requirements, which are managed in a requirements management tool.

The �rst stage of the case study was to verify the pseudo code. The tool
used for formal veri�cation was CBMC (version 3.9) and for that purpose the
pseudo code was manually translated into C code. Since the implementation of
the voting scheme with Boolean values is very simple, manual translation was
considered adequate in this particular case. Moreover, because of the simplicity
of the code, it was possible to derive eight test cases (23) that covered all possible
input and output combinations.

The test cases were encoded as assertions in the C code and veri�ed with the
tool. This process also revealed that the property speci�ed in conjunction with
the associated pseudo code was somewhat vague and incomplete; the informal
description didn't cover all the input/output combinations. We think that this
represents a typical case of specifying simple designs: even though the require-
ments should be explicit and complete, it is very easy to ignore some details
since the design is considered obvious.

The C code used with CBMC is listed in Figure 1. There are three pa-
rameters, corresponding to three inputs to the system; the OCHY_Voter_State

variable is the output. The actual voting is implemented in the statement where
OCHY_Voter_State gets assigned a value. The assertions corresponding to the
eight test cases follow the assignment. The structure of the assertions was chosen
to support understandability in the absence of the implication operator; another
possibility would have been to use not and or operators to substitute for impli-
cation (and give the original form with the implication operator in a comment
above the assertion, for instance). The current form also shows the locality of
assertions in C.

3.2 Working with the VHDL Code

The second stage was to verify the actual implementation of the pseudo code in
VHDL. Ideally, the veri�cation tool should accept VHDL as input language, but
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#include<assert.h>

void foo(int OCHY_comparator_state_ICH1,

int OCHY_comparator_state_ICH2,

int OCHY_comparator_state_ICH3) {

int OCHY_Voter_State = 0;

OCHY_Voter_State =

(OCHY_comparator_state_ICH1 || OCHY_comparator_state_ICH2) &&

(OCHY_comparator_state_ICH1 || OCHY_comparator_state_ICH3) &&

(OCHY_comparator_state_ICH2 || OCHY_comparator_state_ICH3);

if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 1)

&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}

if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 1)

&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 1);

}

if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 0)

&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}

if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 1)

&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}

if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 0)

&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}

if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 1)

&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}

if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 0)

&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 0);

}

if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 0)

&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}}

Fig. 1. The C code and the eight assertions veri�ed with CBMC.

for practical reasons we chose EBMC (version 4.1). Since EBMC uses Verilog as
its input language, we �rst translated the VHDL code to Verilog using a VHDL
to Verilog RTL translator tool [10] (version 2.0). The veri�cation process was not
as straightforward as in the case of the C code. We struggled with the syntax and
the use of the tool since the information available with the installation package
and on the tool website [6] was more limited than in case of CBMC. A signi�cant
practical di�erence with the tools was that the assertions were considered global
in EBMC and local in CBMC. This made the reuse of assertions developed for
the C code impossible.
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always @(posedge clk or posedge rst_n) begin

if(rst_n == 1'b 0) begin

voter_state_i <= 1'b 0;

end else begin

if((ICH1_comparator_state_och_in == 1'b 1 &&

ICH2_comparator_state_och_in == 1'b 1) ||

(ICH1_comparator_state_och_in == 1'b 1 &&

ICH3_comparator_state_och_in == 1'b 1) ||

(ICH2_comparator_state_och_in == 1'b 1 &&

ICH3_comparator_state_och_in == 1'b 1))

begin

voter_state_i <= 1'b 1;

end

else begin

voter_state_i <= 1'b 0;

end

end

end

Fig. 2. The implementation of the voting code after VHDL to Verilog translation.

Figure 2 shows how the voting is implemented in the Verilog code. The always
block gets executed on the rising edge of either the clock or the reset signal. If
the reset is active (zero), then the output is zero. Otherwise the voting occurs.
Interestingly, the implementation in VHDL did not directly correspond to the
original pseudo code, but had && (and) in the innermost level and || (or) in the
outermost level.

The code shown is generated by the translator tool from the original VHDL
source. In practice, with the active low reset signal, it would make more sense to
use a falling edge instead of rising edge to trigger the code block. However, the
block gets triggered with the next rising edge of the clock signal in any case, so
this did not a�ect the veri�cation task.

The code shown in Figure 3 shows a part that was added to the Verilog
code only for the purposes of veri�cation. There are now three new registers:
voter_state_check_in_pos, voter_state_check_in_neg, and voter_state_

check. The value one of the �rst register should imply a voting result one.
Correspondingly, the value one of the second register should imply a voting
result zero. The value of the third register should always be one if the system
is working correctly. Since registers in Verilog have unknown initial values by
default, the new registers are assigned initial values in the initial block.

Figure 4 shows the actual assertion block that gets triggered similarly to the
original voting block. If the reset is not active and at least two of the inputs
are one, the �rst new register gets value one. Correspondingly, if the reset is not
active and at least two of the inputs are zero, the second new register gets value
one. The third new variable gets assigned a value indicating whether the value
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reg voter_state_check_in_pos;

reg voter_state_check_in_neg;

reg voter_state_check;

initial begin

voter_state_check_in_pos = 0;

voter_state_check_in_neg = 0;

voter_state_check = 1;

end

Fig. 3. The added veri�cation code in Verilog � part 1.

always @(posedge clk or posedge rst_n) begin

voter_state_check_in_pos <= rst_n & (1'b 0

| (ICH1_comparator_state_och_in & ICH2_comparator_state_och_in)

| (ICH1_comparator_state_och_in & ICH3_comparator_state_och_in)

| (ICH2_comparator_state_och_in & ICH3_comparator_state_och_in)

);

voter_state_check_in_neg <= rst_n & (1'b 0

| (!ICH1_comparator_state_och_in & !ICH2_comparator_state_och_in)

| (!ICH1_comparator_state_och_in & !ICH3_comparator_state_och_in)

| (!ICH2_comparator_state_och_in & !ICH3_comparator_state_och_in)

);

voter_state_check <= (!voter_state_check_in_pos | voter_state_i) &

(!voter_state_check_in_neg | !voter_state_i);

assert (voter_state_check);

end

Fig. 4. The added veri�cation code in Verilog � part 2 (please note the use of bitwise
operators).

of the �rst new register implies the voting result and the value of the second one
implies the negation of the voting result.

One should note that the assignments are non-blocking, i.e. the right-hand
side of each of the assignments is evaluated �rst. The assignment to the left-hand
side is delayed until all the evaluations have been done.

The structure of the code block enables adding and removing �test cases�
(input combinations in the context of the corresponding expected output value)
from the statements and the expression 1'b 0 ensures that the assertions work
also without any �test cases�. We think that this is a robust, easy-to-use and
reusable solution, since it allows extending the assertions with new properties
incrementally. However, since the code in this case study is simple, the bene�ts
are not so visible here.

The solution can be extended into more complex systems. For each bit of
output two new registers and assignments to them are added, as well as corre-
sponding terms to the expression of the �nal assignment. For each bit of input
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a new term is added to the relevant bitwise conjunctions of the assigned expres-
sions for each expected output value. The assignment for an expected output
value is placed into an always block corresponding to the situations where the
value of the output may change in the code to be tested. However, this method is
limited to stateless systems; a system with internal memory cannot be handled
in such a straightforward manner.

One practical problem related to the inexperience of the person using the
bounded model checking tools was that it was seemingly easy to verify properties
that did not correspond to the actual requirement. For this reason we used a
fault seeding technique where we introduced errors to the properties and checked
whether it was possible to verify the erroneous properties. If not, we also checked
that the counterexample provided by the tool corresponded to the seeded error.
In practice, the errors seeded were more or less random changes made to the
properties, i.e. we did not follow any systematic pattern. We think that this
is a useful and practical technique for engineers without much experience in
using model checking tools since it can be used to help determine whether a
speci�cation actually captures the desired intention, as is done with tests of
vacuity [3, 2], where it is determined whether a subproperty is actually needed
in the speci�cation. This allows, for example, showing that an implication is true
�by default� because the left side is always false.

All the assertions shown in the �gures were veri�ed with the tools. The bound
value we used with EBMC was relative low, though. Once we became familiar
with the tool, we noticed that the bound given to the tool as a command line
option made a big practical di�erence. First, in some cases, it was possible to �nd
problems in the assertions only when the value of the bound was high enough.
This should be taken into account when using the fault seeding technique. Sec-
ond, while the execution time of the tool with low bound values was reasonable
(bound value 1000 corresponded roughly to 10 seconds in veri�cation time with
a regular laptop computer), the execution took much more time with higher
bound values due to the state space explosion. We also ran into some warning
messaging concerning solver inconsistencies and one segmentation fault. Never-
theless, the tools were considered a good choice for the purposes of this small
case study. However, especially the EBMC tool would be much more appealing
from the practical point of view if a proper user manual and documentation were
available.

Regarding future work, creating the test code as used in the case study can
be cumbersome if inputs and outputs are numerous. More complicated inputs
and outputs such as integers have to be handled bit by bit, which causes even
more work. However, since the test code is very regular, it could be generated
automatically with a suitable assisting tool. The registers and assignments can
be created based on a list of outputs, with those of more complex types converted
to a number of single-bit outputs. The expressions for the expected value assign-
ments can be similarly created based on a listing of input combinations with
the corresponding outputs, which may be given for example as a CSV (Comma
Separated Values) �le. In this way test cases can be converted into assertions
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in the code with little e�ort using Excel sheets created by test engineers, for
instance.

4 Discussion

Even though our case study was small-scale in terms of the code checked, it
helped us to identify some potential problems and partial solutions in the con-
text of using model checking techniques to verify safety-critical systems. In more
detail, the analysis of the results of the case study led to the following recom-
mendations.

First, formal veri�cation is seen useful at least in simple cases like the one
studied. It was possible to develop a generic assertion mechanism for the code
translated from VHDL to Verilog, which should be reusable in the veri�cation
of similar designs and further supported by assisting tools. Training would still
be needed, though, in order to get engineers to use the tools.

While reusing assertions is seen to be bene�cial, understanding how to de-
velop e�ective assertions would need further training in the next step after basic
training, unless this is solved by assisting tools. We think that starting with
simple �test cases� before moving towards verifying more complicated properties
can help in this process. In addition, we recommend using the fault seeding tech-
nique where errors are introduced to the properties for the purposes of checking
whether it is possible to verify the erroneous properties; in our case this helped
us to catch errors in the assertions.

Second, the tools used in this study worked well, but their scalability is still
unknown. It would also be better if the VHDL code could be checked directly
without the translation process to Verilog, unless a (certi�ed) translator that
could be trusted is found.

Third, the design �ow in this particular case could be improved by specifying
the properties associated with the requirements more precisely. This would allow
detecting errors and inconsistencies already in the requirements capturing phase,
as this phase is widely recognized to be critical. In an ideal case, the same
properties could be translated into assertions used in the formal veri�cation of
the VHDL code. These kinds of properties and assertions could be reused in the
case of modi�cations in a regression testing fashion; they could ease the burden
of reveri�cation needed in case of modi�cations that a�ect many elements. In
addition, there might be some generic high level properties and assertions that
could be used by di�erent projects as sanity checks for a set of implementations
sharing commonalities.

Fourth, experimenting �rst with tiny systems is highly recommended. Model
checking su�ers from the state explosion problem like any other formal veri�-
cation technique and with bigger systems more expertise is required to specify
the system and requirements in a way that can be handled with the computing
resources available. Moreover, complex speci�cations are more error prone to
write and harder to check.



Veri�cation of Safety-Critical Systems: A Case Study 79

One practical problem related to the tools might be to �nd a suitable formal
veri�cation tool. Formal veri�cation tools capable of analyzing VHDL exist,
such as [13, 5]. Due to high license costs, however, it might be more economical
to buy formal veri�cation as a service (see, for instance [21]), if a company has
only a limited need for such a tool. This option would also require less training.
Another tool-related issue is certi�cation: in principle, the software tools used in
developing safety-critical systems should be certi�ed by independent bodies [14,
p. 83]. While certi�cation is commonly used for compilers, we are not aware of
any certi�ed formal veri�cation tool; this might become an issue in the future
on high SIL/SC levels.

To conclude, the practical case study as well as the review of the related work
show that model checking is a useful technique in the development of safety-
critical systems. While there still are many problems to be solved, the tools
are getting more scalable and user-friendly. In particular, it would be essential
to provide tools that can work directly on the pseudo or source code used in
the development and that require only basic training to be useful. Moreover,
the whole development process could be streamlined with the support of such
tools. While the standards regulating the development practices in the safety-
critical domain are recommending the use of formal veri�cation tools, the biggest
problem seems to be related to training, and methodological introduction into
the development process that could be eased with the help of simple assisting
tools that, for instance, use input formats familiar to the users.
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A Tool for the Certification of Sequential Function
Chart based System Specifications

Jan Olaf Blech

fortiss GmbH

Abstract. We describe a tool framework for certifying properties of sequential
function chart (SFC) based system specifications: CERTPLC. CERTPLC handles
programmable logic controller (PLC) descriptions provided in the SFC language
of the IEC 61131–3 standard. It provides routines to certify properties of systems
by delivering an independently checkable formal system description and proof
(called certificate) for the desired properties. We focus on properties that can be
described as inductive invariants. System descriptions and certificates are gener-
ated and handled using the COQ proof assistant. Our tool framework is used to
provide supporting evidence for the safety of embedded systems in the industrial
automation domain to third-party authorities. In this paper we focus on the tool’s
architecture, requirements and implementation aspects.

1 Introduction

Discovering and validating properties of safety critical embedded systems has been
a research topic during the last decades. Automatic verification tools based on model
checking and static analysis techniques are used in various software and hardware de-
velopment projects. Automatic verification tools are successfully applied to increase
confidence in the system design. However, even the verdicts about systems provided
by automatic verification tools may be erroneous, since automatic verification tools
are likely to contain errors themselves: they use sophisticated algorithms, resulting in
complicated implementations. Due to this high level of complexity of their algorithms
and the underlying theory, they are hardly ever considered as trustable by certification
authorities.

In contrast to general purpose higher-order theorem provers, an automatic verifica-
tion tool possesses a high degree of automation, but it does not achieve the same level of
trustability and is usually specialized towards a problem-specific domain. Higher-order
theorem provers, like COQ [13], are based on a few deduction rules and come with very
small, simple, and trusted proof checkers which are based on type checking algorithms
and provide a high level of confidence.

For this reason we provide a verification / certification environment based on higher-
order theorem provers. It may be used to re-check properties that have been discovered
by automatic verification tools or stated by humans in the first place. If such a check
is run successfully in the higher-order theorem prover one lifts these properties to the
high level of confidence provided by the higher-order theorem prover.
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Based on our ideas on certification of properties for a modeling language [8] and
our work on a certificate generating compiler [5] we present a tool framework CERT-
PLC which emits certificates and allows reasoning about properties of models for pro-
grammable logic controller (PLC) provided in the sequential function chart (SFC) lan-
guage of the IEC 61131–3 standard [17]. Our work comprises a generation mechanism
for COQ representations of our models – a kind of compiler that emits COQ readable
files for given models. In addition to this, it comprises other related proof generation
mechanisms and a framework for supporting proofs that properties of these models do
hold. Our COQ certificates – system description, properties and their proofs – are based
on an explicit semantics definition of the SFC language, thereby ensuring that correct-
ness conditions hold for the system described in the certificate.

The COQ environment has been accepted by French governmental authorities in a
certification to the highest level of assurance of the Common Criteria for Security [12].

In this paper we focus on the following aspects of the CERTPLC tool framework:
– tool architecture,
– proof generation and the construction of certificates,
– and additional implementation issues.

Furthermore, we give an overview on usage scenarios, the formalized SFC semantics
and present and discuss general characteristics of the methodology. A long version of
this paper is available as a report [4]. In the current state of implementation the tool
framework is applicable for standard PLC described using SFC. An exemplary usage
with another language: function block diagrams (FBD) is also described to illustrate the
flexibility of the described framework. The support of other languages and a detailed
investigation of case studies are not subjects of this paper.

Our certification framework is mostly characterized by:
– The usage of an explicit semantics for properties and systems. This is human

readable, an important feature to convince certification authorities.
– The focus on the PLC domain and the integration in an existing tool.
– A high degree of automation – compared to other work using higher-order theorem

provers, that still allows human interaction.
– The integration into an existing tool for graphically designing PLC: EasyLab [2].

The high expressiveness of our semantics framework is largely facilitated by the usage
of a higher-order theorem prover.

1.1 Certification

In the context of this paper we define

– certification as the process of establishing a certificate.
– automatic certification is the process of establishing a certificate automatically.
– In our work certificates comprise a formal description of a system, a formal de-

scription of a desired property and a proof description (a proof script or a proof
term) that this property does hold.

– certificate checking is the process of checking that the property does indeed hold
for the formal system description in the certificate. This checking is done by using
the proof description in the certificate.
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1.2 The Trusted Computing Base in Certification

Apart from components like operating system and hardware, in our certification ap-
proach, the trusted computing base (TCB) comprises the certificate checker (the core
of the COQ theorem prover) and the program that generates formal PLC descriptions
for COQ automatically. The check that these descriptions indeed represent the original
PLC can be done manually. One goal for the generation is human readability to make
such a check feasible at least for experienced users. Not part of the TCB are the proof
description and its generation mechanism. The proof description only provides hints
to the certificate checker. In case of faulty proof descriptions a valid property might
not be accepted by a certificate checker. It can never occur that a faulty property is ac-
cepted even if wrong proof descriptions are used. Thus, our approach is sound, but not
necessarily complete.

1.3 Related Work

Notable milestones on frameworks to certify properties of systems comprise proof car-
rying code [16]. Proofs for program-specific properties are generated during the compi-
lation of these programs. These are used to certify that these properties do indeed hold
for the generated code. Thus, users can execute the certified code and have, e.g., some
safety guarantees. At least two problems have been identified:

1. Properties have to be formalized with respect to some kind of semantics. This is
sometimes just implicitly defined.

2. Proof checkers can grow to a large size. Nevertheless, they have to be trusted.

The problem of trustable proof checkers is addressed in foundational proof carrying
code [1, 22]. Here the trusted computing base is reduced by using relatively small proof
checkers. The problem of providing a proof carrying code approach with respect to a
mathematically founded semantics is addressed in [20]. In previous work we have also
addressed the problem of establishing a formal semantics for related scenarios [5, 8].

Formal treatment of PLC and the IEC 61131–3 standard has been discussed by a
larger number of authors before. Formalization work on the semantics of the Sequential
Function Charts is given in [10, 11]. This work was a starting point for our formalization
of SFC semantics.

The paper [3] considers the SFC language, too. Untimed SFC models are trans-
formed into the input language of the Cadence SMV tool. Timed SFC models are trans-
formed into timed automata. These can be analyzed by the Uppaal tool.

Another language of the IEC 61131–3 standard used for specifying PLC are func-
tion block diagrams (FBD). Work in the formal treatment of FBD can be found in [23].
The FBD programs are checked using a model-checking approach. A COQ formaliza-
tion of instruction lists (IL) – also part of the IEC 61131–3 standard – is presented
in [18].

The approach presented in [21] regards a translation from the IL language to an
intermediate representation (SystemC). A SAT instance is generated out of this repre-
sentation. The correctness of an implementation is guaranteed by equivalence checking
with the specification model.
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1.4 Overview

We present the IEC 61131–3 standard, including the SFC language and its semantics
as formalized in COQ in Section 2. The tool environment in which our CERTPLC tool
framework is supposed to be used and an overview about the tool’s architecture is de-
scribed in Section 3. The CERTPLC ingredients and their interactions are described in
some detail in Section 4. Typical proofs that can either be generated or hand-written
by using our semantics are discussed in Section 5. Finally, an implementation overview
and a short evaluation is given in Section 6. A conclusion is featured in Section 7.

2 IEC 61131–3, SFC, Semantics and Certification

In this section we sketch the semantics of sequential function charts (SFC). The de-
scription in this section is based on our earlier work [6] which is influenced by the
descriptions in [10, 11]. Furthermore, we present some work on the integration of func-
tion block diagrams (FBD) into our tool framework.

2.1 The SFC Language

Our tool framework works with PLC described in the SFC language. The SFC language
is a graphical language for modeling PLC. It is part of the IEC 61131–3 standard and
frequently used together with other languages of this standard. In such a case, SFC are
used to describe the overall control flow structure of a system. The standard is mainly
used in the development of embedded systems in the industrial automation domain.

The standard leaves a few semantical aspects open to the implementation of the PLC
modeling and code generation tool. In cases where the semantics is not well defined by
the standard we have adapted our tool to be compatible with the EasyLab [2] tool.

Syntax Syntactically we represent an SFC as a tuple (S, S0, T, A, F, V,ValV ). It com-
prises a set of steps S and a set of transitions T between them. A step is a system
location which may either be active or inactive in an actual system state, it can be as-
sociated with SFC action blocks from a set A. These perform sets of operations and
can be regarded as functors that update functions representing memory. The mapping
of steps to sets of action blocks is done by the function F . Memory is represented by a
function from a set of variables V to a set of their possible values ValV . S0 ⊆ S is the
set of initially active steps.

A transition is a tuple (Sin, g, Sout). It features a set of states that have to be enabled
Sin ⊆ S in order to take the transition. It features a guard g that has to be evaluated
to true for the given system state. g is a function from system memory to a truth value
– in COQ we formalize this as a function to the Prop datatype. A transition may have
multiple successor steps Sout ⊆ S. The types ValV that are formalized in our SFC
language comprise different integer types and boolean values.

Figure 1 shows an example SFC structure realizing a loop with a conditional branch.
The execution starts with an initialization step Init. After it has been processed control
may pass to either Step2 or to a step Return. Once Step2 has been processed control is
passed to Init again.
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Fig. 1: A loop in the SFC language

Please note, that in addition to loops and branches SFC allow for the formaliza-
tion of parallel processing and synchronization of control. This is due to the multiple
successor and predecessor steps in a transition.

Semantics Semantically the execution of an SFC encounters states, which are (m, a, s)
tuples. They are characterized by a memory state m, the function from variables to their
values, a set of active action blocks a that need to be processed and a set of active steps
s.

The semantics is defined by a state transition system which comprises two kinds of
rules:

1. A rule for processing of an action block from the set of active action blocks a. This
corresponds to updating the memory state and removing the processed action block
from a.

2. A rule for performing a state transition. The effect on the system state is that some
steps are deactivated, others are activated. Each transition needs a guard that can be
evaluated to true and a set of active steps. Furthermore, we require that all pending
action blocks of a step that is to be deactivated have been executed.

It is customary to specify the timing behavior of a step by time slices: a (maximal)
execution time associated with it. In our work, this is realized using special variables
that represent time.

2.2 The FBD Language

Function block diagrams are a language from the IEC 61131–3 standard used to model
the behavior of action blocks in SFC. Other languages that may be used for this purpose
comprise instruction lists (IL) and ladder diagrams (LD).

FBD comprise two basic kinds of elements: function blocks and connections be-
tween them. Each function block represents an instruction. There are special instruc-
tions for reading and writing global variables. Edges between function blocks are used
to model dataflow. Thus, FBD are used to describe functions.
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Apart from the basic functionality, FBD may contain cycles in their dataflow de-
scription. Semantically such a cycle must feature a delay element. Variable values as-
sociated with such an FBD are computed in an iterative process.

In the case of cyclic dependencies an FBD has to be associated with a time slice,
a maximal time – number of iterations – for the execution of the FBD. Thus, on an
abstract level, FBD may still be regarded as functions and as SFC action blocks.

We have formalized an FBD syntax and semantics framework in COQ that follows
the description above. Most parts of this, however, are only to be used manually by
users who manually change system descriptions and corresponding proofs.

3 The Tool Setting

In this section we describe our CERTPLC tool’s architecture and usage scenarios. Fig-
ure 2 shows the CERTPLC ingredients and their interconnections. In an invocation of

CertPLC

representation generator proof generator

PLC model

(SFC)

basic properties 
+

proofs
Coq representation

certificate 

proofs + tactics

user defined properties 

CertPLC CertPLC

Fig. 2: CERTPLC overview

the tool framework an SFC model is given to a

– representation generator which generates a COQ representation out of it. This is
included in one or several files containing the model specific parts of the semantics
of the SFC model. The COQ representation is human readable and can be validated
against the original graphical SFC specification by experienced users.

The same SFC model is given to a

– proof generator which generates COQ proof scripts that contain lemmas and their
proofs for some basic properties that state important facts needed for machine han-
dling of the proofs of more advanced properties.
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In order to achieve a certificate one needs a property that the certificate shall ensure. One
needs to formalize this desired property. The property is proved in COQ by using either
a provided tactic or a hand written proof script. Our provided tactics use the generated
properties and their proofs – provided by the proof generator – and a collection of

– proofs and tactics, a kind of library. It contains additional preproved facts and
tactics which may be used to automatically prove a class of properties.

System description, used lemmas and their proofs, and the property and its proof form
a certificate.

Furthermore, our tool framework comprises a COQ library that can be used by gen-
erated and non-generated COQ files. It allows storage of often used definitions in addi-
tion to the elements described so far. We have formalized some behavioral definitions
of PLC blocks which are typically modeled in other languages than SFC.

Usage Scenario

CERTPLC is developed to support the following standard usage scenario:

– A PLC is developed using the following work-flow:
1. Establishing requirements,
2. and derive some early formal specification.
3. Based on this specification the overall structure – e.g., the control flow – is

specified using the SFC language. More fine-grained behavioral aspects are
textually specified, e.g., by annotating the SFC structure.

4. Taking the requirements and this specification, developers potentially using the
help of automatic verification tools derive and specify consistency conditions
and properties that must hold. Some consistency conditions may directly cor-
respond to a subset of the requirements.

– Regarding 3) the SFC structure is modeled in the graphical EasyLab tool or im-
ported into EasyLab.

– Regarding 4) properties and SFC action blocks are specified using the COQ syntax
by trained developers. It is not required to do any proofs in COQ for this.

– CERTPLC generates representations for the PLC specification. Together with the
properties a certificate is established automatically or with user interaction: the
choice of tactics and in some-cases hand-written proof script code.

– The PLC development is further refined and fine grained parts may be implemented
using other languages from the IEC 61131–3 standard.

– Certificates may be either regenerated – if possible – or manually adapted – in case
of unsupported language elements that may occur during the refinement – to cope
with possible changes.

The certificate can be distributed and analyzed independently by third parties. One over-
all goal is to convince certification authorities and potential customers of the correctness
of PLC with the help of certificates. Since the certificates are independent of the orig-
inal development and its tools some confidential data (e.g., the certificate generation
mechanism and the analysis algorithms used to discover properties of the system) does
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not have to be revealed during the process of convincing customers or certification au-
thorities.

The described usage scenario can be adapted. It is, e.g., possible to integrate hand
written specifications and proofs.

4 The CertPLC Tool Environment and Coq

In this section we describe COQ specific parts of the CERTPLC tool. We present some
static COQ code that is generic to our framework. Furthermore, we present some PLC
specific example COQ code – definitions and proofs – to demonstrate aspects of its
generation.

Taking the semantics sketch of SFC in Section 2 the semantic representation of the
SFC structure is encoded in COQ as a transition system. For each given SFC SFC we
generate a COQ representation. It specifies a set of reachable states and a transition
relation.

4.1 Realization Using Generic and Generated Files

In order to certify properties of PLC we need files that contain semantics of systems,
interesting properties and proofs of these properties. Some of these files are generic,
i.e., they can be used for a large class of PLC, properties, and proofs. CERTPLC pro-
vides a library of static files that contain generic aspects. Other files are highly specific
to distinct PLC. For each PLC CERTPLC generates files that are just needed for this
particular PLC, properties formulated on it, and proofs that can be conducted on it.

In particular the following aspects are generic, thus, stored in static files:

– Generic definitions and templates for SFC:
• Datatype definitions and derived properties of these datatypes.
• Definitions for building blocks: SFC action blocks, FBD blocks, and common

combinations of these blocks.
• Generic semantics framework comprising an instantiable state transition rela-

tion and a generic definition for a set of reachable states.
– CERTPLC is designed to support tactics for solving certain proof aspects. In par-

ticular we distinguish:
• Tactics that contain an overall proof structure, deal with certain system struc-

tures and property structures.
• Tactics that solve arithmetic constraints.

The following aspects are individual for each PLC, thus, they are generated:

– A state transition like representation of SFC formalized using generic SFC def-
initions and a concrete definition of reachable states instantiating a generic SFC
definition.

– Lemmas containing system-specific facts on the PLC and their proofs.

Furthermore, the properties that shall hold are of course specific to each PLC. Their
verification is done by either using a tactic that assembles the generic and non-generic
parts of the proof or by some hand-written proof script adaptations.
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4.2 Generic / Static Parts of the Coq Infrastructure

Here we describe generic parts of the COQ parts in our CERTPLC tool framework.
These are realized as static COQ files and can used by the dynamically created files.

Datatypes Datatypes which we have formalized for SFC comprise integers of different
length (8,16,32 bit, unbounded) and bools. In COQ they are stored using the datatype
nat of natural numbers plus a flag that tags them as being members of an integer type.
Operators working on these integers perform operations compliant with the type. An
easy integration of other bounded integer formalizations (as used e.g., in [15]) is also
possible.

Other datatypes like floating point are seldomly used in PLC applications. They are
not yet supported, although they could be integrated relatively easy: The basic seman-
tics definitions in our framework are able to support a much richer type system, even
dependent datatypes.

Building Blocks Building blocks define common elements for the construction of PLC.
Two levels of building blocks can be distinguished:

– Function blocks that are intended to become part of FBD.
– Predefined action blocks. These may be, but do not have to modeled using FBD.

As mentioned in Section 3 we have formalized some of these blocks. Further formaliza-
tion of blocks should be done together with new case studies since different application
domains have different sets of FBD and SFC elements. FBD elements that are highly
specific to a single application or an application domain are highly common in PLC.
For FBD we have experienced even vendor specific elements for the basic arithmetic
operations.

Generic Semantics Framework The COQ realization of the SFC syntax follows the de-
scription presented in Section 2. For compatibility with the EasyLab tool and to ease
generation we distinguish between steps and step identifiers in our COQ files, thereby
introducing some level of indirection. Most importantly, our semantics framework com-
prises a template for a state transition relation of PLC systems and a template for defin-
ing the set of reachable states. In order to realize this, we first define generic instantiable
predicates that formalize a state transition relation. We provide a predicate executeAc-
tion defined in Figure 3 to give a look and feel. It formalizes the effect of the execution
of an action block: The predicate takes two states (sometimes called configurations c
and c′) and returns a value of type Prop. We require four conditions to hold in order to
take a state transition:

1. An action block a needs to be active.
2. The memory mapping after the transition is the application of a to the previous

memory mapping. This is the updating of the memory by executing the action
block.

3. The action block a is removed from the set of active action blocks during the tran-
sition.
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Definition executeAction:
fun c c’ =>

let ’(m,activeA,activeS) := c in
let ’(m’,activeA’,activeS’) := c’ in

(exists a, In a activeA /\ m’ = a m /\
activeA’ = remove Action_eq_dec a activeA) /\
activeS = activeS’.

Fig. 3: The executeAction predicate

4. The rest of the state does not change.

Another predicate stepTransition formalizes the effect of a transition from a set of SFC
steps to another. Here we require the following items:

1. The validity of the transition (guard expression).
2. The memory state may not change.
3. The activation of steps is conform to the semantics.
4. The activation and requirements of action blocks is semantics conform.

Using these predicates we define inductively the set of reachable states as a pred-
icate. It depends on an initial state (comprising a list of initially active steps), and a
transition relation. It is defined following the description in Section 2.

Structural Tactics CERTPLC supports structural tactics that perform the most basic
operations for proofs of properties. They work with semantics definitions based on our
generic semantics framework. Depending on the property such a tactic is selected by
the user and applied as the first step in order to prove the desired property. Different tac-
tics have to be selected by the user: Selection depends on whether the property is some
kind of inductive invariant – the default case mostly addressed in this paper – or another
class of properties. We have identified several other classes that are relevant for differ-
ent application domains. Such a tactic is applied as the first step in order to prove the
desired property. These tactics already perform most operations concerning the system
structure. Especially for the non-standard cases, tactics applications may leave several
subgoals open. These may be handled with more specialized tactics tailored for the
corresponding characteristics of these proof-goals.

Arithmetic tactics Arithmetics tactics solve subgoals that appear at later stages in the
proof. They may be called by structural tactics or work on open subgoals that are left
open by these tactics. They comprise classical decision procedures like (e.g., Omega
[19] – its implementation in COQ).

Up till now, we are only using existing tactics designed by others. However, we
are also working on tactics that combine arithmetic aspects with other system state
dependent information.
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4.3 Semantics Definitions as State Transition Systems

As seen in Section 4.2 we only need to instantiate a template in order to create a system
definition that captures the semantics of our PLC. We need to provide at least a set of
initially active steps, a transition relation, and action block definitions.

For the initial step, we provide an initial memory state, where all values are set to a
default value and a single active entry step.

The transition relation is generated by translating the SFC transition conditions into
COQ. The generated COQ elements of the transition relation for the SFC depicted in
Figure 1 are shown in Figure 4. Three tuples are shown, each one comprises a set of
activated source steps, a condition and a set of target steps activated after the transition.
It can be seen that the condition maps a variable value mapping – part of the SFC state
– to a truth condition – returning the type Prop. The types used in this expression are
16-bit integer types.

( Init::nil ,
fun m => ((fun (x : int16) => x <int16 10 ) (m VAR_x) ),
Step2::nil )

( Step2::nil ,
fun m => ((fun (x : int16) => 1 ) (m VAR_x) ),
Init::nil )

( Init::nil ,
fun m => ((fun (x : int16) => x >=int16 10 ) (m VAR_x) ),
Return::nil )

Fig. 4: Generated transition rules in COQ

Appropriate action blocks are selected by their names. In addition, to this, we gener-
ate several abstract datatype definitions for identifying steps with names and identifiers
and function blocks and action blocks.

4.4 Automatically Generated Proofs for System-specific Facts

CERTPLC is designed to automatically generate for each system basic properties and
proofs. These prove some system-specific facts of the system. These proofs are used
automatically by tactics, but can also be used manually to prove additional user defined
properties of systems.

One important fact that needs to be proven is that only those action blocks may
appear in the set of currently active action blocks that do belong to the actual system
definition. Our proof generator generates an individual lemma and its proof for each
PLC. Figure 5 shows such a lemma for an SFC that comprises just two possible action
blocks: action Init and action Step2. The predicate SFCreachable states is created by
instantiating a template definition from the generic semantics framework for a concrete
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Lemma aux_1:
forall s, SFCreachable_states s -> (forall a, In a (snd s) ->

( a = action_Init \/ a = action_Step2 )).

Fig. 5: An automatically generated basic property

PLC. In and snd (second) are COQ functions to denote membership in a set and select
an element of a tuple, respectively. In the case at hand snd selects the set of active action
blocks from a state. The proof script itself is also generated. It comprises an induction
on reachable states of the concrete system. Depending on the number of action blocks
in the PLC it can typically comprise several hundred applications of elementary COQ
tactics.

The certification of properties is the key feature of CERTPLC. Users write their
desired properties in COQ syntax. This does not require as much understanding of the
COQ environment as one could think at a first glance. All that is required is writing a
logical formula that captures the desired property.

5 Automatic Certification of Invariant Properties

In this section we describe the principles of automatically proving properties correct.
Proof scripts encapsulating these principles are generated by the CERTPLC framework
components as described in Section 4. We focus on inductive invariants.

5.1 Proof Structure for Inductive Properties

We start with an inductive invariant property I and an SFC description of a PLC SFC .
Following the ideas presented in [8] the structure of a proof contained in our certificates
is realized by generated proof scripts, generic lemmas and tactics. They establish a
proof principle that proves the following goal:

∀ s . s ∈ ReachableSFC =⇒ I(s)

The set of reachable states for SFC is denoted ReachableSFC . JSFC K specifies
the state transition relation (cf. Section 4). First we perform an induction using the
induction rule of the set of reachable states. This rule is automatically established by
COQ when defining inductive sets. After the application the following subgoals are left
open:

I(s0) for initial states s0 I(s) ∧ (s, s′) ∈ JSFC K =⇒ I(s′)

The first goal can be solved in the standard case by a simple tactic which checks that all
conditions derived from I are fulfilled in the initial states.

For the second goal the certificate realizes a proof script which – in order to allow
efficient certificate checking – performs most importantly the following operations:

– Splitting of conjunctions in invariants into independently verifiable invariants.
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– Splitting of disjunctions in invariants into two independently verifiable subgoals.
– Normalizing arithmetic expressions and expressions that make distinctions on ac-

tive steps in the SFC.
– Exhaustive case distinctions on possible transitions. Each case distinction corre-

sponds to one transition in the control flow graph of the SFC. A typical case on a
transition from a partially specified state s to a partially specified succeeding state
s′ can have the following form:

∀ s s′ .

I(s) and case distinction specific conditions on s ∧
case specific transition conditions that need to be true to go from s to s′ ∧
case distinction specific definition of s′ =⇒ I(s′)

The case distinction specific parts in such a goal can, e.g., feature arithmetic con-
straints, which can be split into further cases.
Some of the cases that occur can have contradictions in the hypothesis. Consider for
example an arithmetic constraint for a variable from a precondition of a state con-
tradicting with a condition on a transition. These contradictions result from the fine
granularity of our case distinctions. Some effort can be spent to eliminate contra-
dicting cases as soon as possible (cf. [8]) which can speed up the checking process.
Unlike in classical model-checking we get the abstraction from (possibly infinite)
concrete states to (finite) arcs in the control flow graph almost for free. Thus, in our
case distinctions, we do not have to regard every possible state, we rather partition
states into classes of states and reason about these classes symbolically.

– The final step comprises the derivation of the fact that the invariant holds after
the transition from the transition conditions and the decision of possible arithmetic
constraints.

[8] features a completeness result for a class of inductive invariants for a similar prob-
lem.

5.2 Proving Non Inductive Invariants

The main focus of CERTPLC is on inductive invariants, However, additionally we have
established a collection of preproved lemmas useful for proving the (un-)reachability
of certain states. In particular the following cases turned out to be necessary in our case
studies:

– State s can only be reached via a transition where a condition e must be enabled, s
is not initial, e can never be true in the system, this implies s can not be reached.

– Under system specific preconditions: Given an expression over states e, if e be-
comes true the succeeding state will always be s. This is one of the few non-
inductive properties. However, the proof of this benefits from a proof that e can
only become true in an explicitly classified set of states. This can be provided by
one of the techniques above.

Additional consistency properties may be certified by hand-written proof scripts. This,
however, requires some level of expertise in COQ.
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6 Additional Implementation Aspects and Evaluation

Here we describe additional implementation aspects that are not covered in the previous
sections and provide a short evaluation.

The COQ representation generator is implemented as an Eclipse plug-in in Java
using the IEC 61131–3 meta model of EasyLab and the Eclipse Modeling Framework
(EMF) [14]. Representations and lemmas + proofs for basic properties are generated for
COQ 8.3. Likewise our libraries for tactics, lemmas and SFC action blocks are formal-
ized using this version. The realization of this representation generator can be regarded
as a simple compiler or model to model transformation. A kind of visitor pattern is used
to pass through the model representation in EMF format and emit corresponding COQ
code. The generation of PLC specific lemmata and their proofs is similar to code gen-
eration. A visitor picks all necessary information and generates the lemma text and its
proof script. Some storage of intermediate information is needed. The setup is similar
to the techniques used in [8] and [9].

Likewise our work builds upon the PLC semantics of EasyLab which we have for-
mally described [6] and realized in COQ. A combination of our SFC semantics with a
semantics of the instruction list (IL) language and an associated case study can be found
in [7].

7 Conclusion and Future Work

In this paper we have presented the CERTPLC environment for certification of PLC
We described the architecture of the tool framework, possible usage scenarios, the tech-
nical realization, and parts of the COQ semantics. CERTPLC is aimed at the formal
certification of PLC descriptions in the SFC language. Nevertheless, some features of
FBD are integrated. Future work shall extend this support and aims at integrating other
languages from the IEC 61131–3 standard. At the current state, the implementation of
the tool is sufficient to handle SFC comprising standard elements and smaller invariants
efficiently. We believe that the generic parts common to most SFC verification work are
realized in CERTPLC. The tool framework is designed such that it is easily extendable,
e.g., with additional tactics, arithmetic decision procedures and building blocks for SFC
and FBD elements. Such additions – which might be used only in certain problem and
application domains – are subject to future work.
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