Formalizing Cut Elimination of Coalgebraic Logics in Coq

Hendrik Tews

Technische Universität Dresden

Tableaux, September 17, 2013

Introduction		
0000		

Summary

Cut Elimination in Coalgebraic Logics

Dirk Pattinson, Dept. of Computing, Imperial College London

Lutz Schröder[†], DFKI Bremen and Dept. of Comput. Sci., Univ. Bremen

▶ in Coq, formalize ²/₃ of

Abstract

We give two generic proofs for cut elimination in propositional modal logics, interpreted over coalgebras. We first investigate semantic coherence conditions between the axiomatisation of a particular logic and its coalgebraic semantics that guarantee that the cut-rule is admissi-

- formalisation of syntax, semantics and 2 cut-elimination theorems for (generic) propositional multi-modal logic
- **K** as example, (work in progress on coalition logic)
- revealed only 4 errors (which were easy to correct)
- see http://askra.de/science/coalgebraic-cut

Introduction		
0000		

Motivation

Verified Cut Elimination

- Cut elimination is an important meta property of a logic
- but is tricky to prove
- ... and proofs are rarely ever spelled out

Generic Nature of Coalgebraic Modal Logics

- results apply to every logic that fits into the framework
- formalising the preconditions suffices to obtain formalised soundness, completeness and cut-elimination results

This work is the basis for

certified validity checkers extracted from the completeness proof

Introduction		
0000		

Cut Elimination

Semantic: Given a proof for Γ

- \blacktriangleright soundness shows validity of Γ
- cut-free completeness shows the existence of a cut-free proof

Syntactic: Shift cut upwards, replacing, for instance,

$$(\neg \land) \frac{\vdash \neg A, \neg B, C}{\vdash \neg (A \land B), C} \quad \frac{\vdash A \quad \vdash B}{\vdash A \land B} (\land)$$
$$\frac{\vdash C}{\vdash C} (\mathsf{cut})$$

by

$$(\mathsf{cut}) \xrightarrow{\vdash \neg A, \neg B, C \qquad \vdash A}_{\begin{array}{c} \vdash \neg B, A \qquad \qquad \vdash B \\ \hline \vdash C \end{array}} (\mathsf{cut})$$

Introduction		

Outline

Introduction

► Formalization in Coq

- syntax
- proofs
- semantics

► Selection of Major Results

► Some Interesting Bits

- classical vs. intuitionistic logic
- 1 of the 4 problems found during the formalisation

Conclusion

	Formalization			
0000	0000	000	0000	0000

Coalgebraic Modal Logics: Formulas

Multi-modal Propositional Modal Logic

- parametric on modal similarity type Λ which provides the set of modal operators and their arity
- Formulas: p, f ∧ g, ¬f, ♡(f₁,..., f_n) for some set of propositional variables V, p ∈ V and ♡ of arity n

Record modal_operators : **Type** := { operator : **Type**; arity : operator \rightarrow nat }. **Variable** (V : **Type**) (L : modal_operators).

counted_list A n are lists over A of length n

Formalization		
0000		

Coalgebraic Modal Logics: Formulas

Multi-modal Propositional Modal Logic

- parametric on modal similarity type Λ which provides the set of modal operators and their arity
- Formulas: p, f ∧ g, ¬f, ♡(f₁,..., f_n) for some set of propositional variables V, p ∈ V and ♡ of arity n

$$\label{eq:record} \begin{split} & \textbf{Record} \ \mbox{modal_operators}: \ \textbf{Type} := \{ \ \mbox{operator}: \ \textbf{Type}; \ \mbox{arity}: \ \mbox{operator} \rightarrow \ \mbox{nat} \ \}. \\ & \textbf{Variable} \ (V: \ \textbf{Type}) \ (L: \ \mbox{modal_operators}). \end{split}$$

counted_list A n are lists over A of length n

Formalization		
0000		

Coalgebraic Modal Logics: Formulas

Multi-modal Propositional Modal Logic

- parametric on modal similarity type Λ which provides the set of modal operators and their arity
- Formulas: p, f ∧ g, ¬f, ♡(f₁,..., f_n) for some set of propositional variables V, p ∈ V and ♡ of arity n

Record modal_operators : **Type** := { operator : **Type**; arity : operator \rightarrow nat }. **Variable** (V : **Type**) (L : modal_operators).

counted_list A n are lists over A of length n

Formalization		
0000		

Coalgebraic Modal Logics: Rules I

Fixed Propositional Rules

$$\frac{\vdash \Gamma, \rho, \neg \rho}{\vdash \Gamma, \neg \gamma} (Ax) \qquad \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \land B} (\land) \qquad \frac{\vdash \Gamma, \neg A, \neg B}{\vdash \Gamma, \neg (A \land B)} (\neg \land)$$
$$\frac{\vdash \Gamma, A}{\vdash \Gamma, \neg \neg A} (\neg \neg) \qquad \frac{\vdash \Gamma, A \vdash \Delta, \neg A}{\vdash \Gamma, \Delta} (cut)$$

Definition sequent : **Type** := list lambda_formula. (* modulo reordering *) **Record** sequent_rule : **Type** := {assumptions: list sequent; conclusion: sequent}.

Formalization		
0000		

Coalgebraic Modal Logics: Rules I

Fixed Propositional Rules

$$\frac{\vdash \Gamma, \rho, \neg \rho}{\vdash \Gamma, \rho, \neg \rho} (\mathsf{Ax}) \qquad \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \land B} (\land) \qquad \frac{\vdash \Gamma, \neg A, \neg B}{\vdash \Gamma, \neg (A \land B)} (\neg \land)$$
$$\frac{\vdash \Gamma, A}{\vdash \Gamma, \neg \neg A} (\neg \neg) \qquad \frac{\vdash \Gamma, A \vdash \Delta, \neg A}{\vdash \Gamma, \Delta} (\mathsf{cut})$$

Definition sequent : **Type** := list lambda_formula. (* modulo reordering *) **Record** sequent_rule : **Type** := {assumptions: list sequent; conclusion: sequent}.

Formalization		
0000		

Coalgebraic Modal Logics: Rules II

Logic Specific 1-Step Rules for Modalities

$$\frac{\vdash a_1^1, \ldots, \neg b_1^1, \ldots}{\vdash \heartsuit_1(\ldots), \ldots, \neg \heartsuit_1'(\ldots), \ldots}$$

Subject to Additional Conditions

- non-empty conclusion
- arguments for the modal operators in the conclusion are unnegated propositional variables
- > all variables in the assumptions appear in the conclusion
- proofs may contain substitution instances of 1-step rules

Coalgebraic Modal Logics: Proofs

Proofs are finite trees build from rules and assumptions

Inductive proof(rules : set sequent_rule)(hypotheses : set sequent) : sequent \rightarrow Type :=

 $\begin{array}{l} \mbox{assume}: \mbox{forall}(gamma: sequent), \\ \mbox{hypotheses gamma} \rightarrow \mbox{proof rules hypotheses gamma} \\ \mbox{rule}: \mbox{forall}(r: sequent_rule), \mbox{rules } r \rightarrow \\ \mbox{dep_list sequent (proof rules hypotheses) (assumptions r)} \rightarrow \\ \mbox{proof rules hypotheses (conclusion r).} \end{array}$

- proof R H G is the type of proof trees for sequent G using rules R and hypotheses H
- ▶ dep_list A T [a₁;...; a_n] is a inhomogeneous list of n elements where the *i*-th element has type T a_i
- very concise formalisation relying on dependent types

Coalgebraic Modal Logics: Proofs

Proofs are finite trees build from rules and assumptions

Inductive proof(rules : set sequent_rule)(hypotheses : set sequent) : sequent \rightarrow Type :=

 $\begin{array}{l} \mbox{assume}: \mbox{forall}(gamma:sequent), \\ \mbox{hypotheses gamma} \rightarrow \mbox{proof rules hypotheses gamma} \\ \mbox{rule}: \mbox{forall}(r:sequent_rule), \mbox{rules } r \rightarrow \\ \mbox{dep_list sequent (proof rules hypotheses) (assumptions r)} \rightarrow \\ \mbox{proof rules hypotheses (conclusion r).} \end{array}$

- proof R H G is the type of proof trees for sequent G using rules R and hypotheses H
- ▶ dep_list A T [a₁;...; a_n] is a inhomogeneous list of n elements where the *i*-th element has type T a_i
- very concise formalisation relying on dependent types

	Results	

Outline

Introduction

Formalization in Coq

Selection of Major Results

Some Interesting Bits

Conclusion

	Results	
	000	

Formalized Results

```
Variable T : functor.
```

```
\label{eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_line
```

	Results	
	000	

Formalized Results II

Variable op_eq : eq_type (operator L). **Variable** v_eq : eq_type V.

 $\begin{array}{l} \textbf{Theorem syntactic_admissible_cut :} \\ \textbf{forall}(rules : set sequent_rule), \\ countably_infinite V \rightarrow \\ one_step_rule_set rules \rightarrow \\ absorbs_congruence rules \rightarrow \\ absorbs_contraction op_eq v_eq rules \rightarrow \\ absorbs_cut op_eq v_eq rules \rightarrow \\ admissible_rule_set (GR_set rules) empty_sequent_set is_cut_rule. \end{array}$

	Results 00●	

Application to K

using the rule set
$$\frac{\vdash \neg p_1, \ldots, \neg p_n, p_0}{\vdash \neg \Box p_1, \ldots, \neg \Box p_n, \Box p_0}$$

Theorem k_semantic_cut :

classical_logic \rightarrow admissible_rule_set (GR_set k_rules) (empty_sequent_set VN KL) is_cut_rule.

Theorem k_syntactic_cut :

admissible_rule_set (GR_set k_rules) (empty_sequent_set VN KL) is_cut_rule.

Lemma k_nd_equiv : **forall**(s : sequent VN KL), provable (GRC_set k_rules) (empty_sequent_set VN KL) s \leftrightarrow provable (GRC_set is_k_n_rule) k_d_axioms s.

		Interesting Bits	
	N		

Outline

Introduction

Formalization in Coq

Selection of Major Results

Some Interesting Bits

Conclusion

	Interesting Bits	
	0000	

Classical vs. Intuitionistic Logic

Classical object logic of Pattinson & Schröder

► rules
$$- \frac{\vdash \Gamma, A}{\vdash \Gamma, \neg \neg A}$$
 (¬¬)

• defined disjunction: $A \lor B \stackrel{\text{def}}{=} \neg (\neg A \land \neg B)$

Coq's intuitionistic meta logic

- $A \lor \neg A$ is not a tautology, but $\neg (\neg A \land \neg \neg A)$ is
- $\neg \neg A \rightarrow A$ is not a tautology, but $A \rightarrow \neg \neg A$ is

Expect, that some results of Pattinson & Schröder are not provable in Coq

- making Coq classical: Require Classical.
- I prefer

Definition classical_logic : **Prop** := **forall**(P : **Prop**), $\neg \neg P \rightarrow P$.

	Interesting Bits	
	0000	

The need for classical reasoning

- ... depends on disjunction and the semantic of sequents
 - ▶ disjunction is syntactic sugar: $A \lor B \stackrel{\text{def}}{=} \neg(\neg A \land \neg B)$ in the object logic
 - ▶ semantic of sequents $(\llbracket \rrbracket_S)$ is defined via the semantic of formulas $(\llbracket \rrbracket_F)$

$$\llbracket \Gamma \rrbracket_{S} \stackrel{\text{def}}{=} \llbracket \bigvee \Gamma \rrbracket_{F}$$
$$\llbracket A, B \rrbracket_{S} \stackrel{\text{def}}{=} \llbracket A \lor B \rrbracket_{F} = \llbracket \neg (\neg A \land \neg B) \rrbracket_{F}$$

Double negation translation has surprising effects

►
$$\frac{}{\vdash \Gamma, p, \neg p} (Ax) \text{ is sound, because } \neg(\neg p \land \neg \neg p) \text{ is tautological}$$
►
$$\frac{\vdash \Gamma, A \vdash \Delta, \neg A}{\vdash \Gamma, \Delta} (cut) \text{ is only sound when assuming classical_logic, because } A \land \neg(\neg B \land \neg \neg A) \rightarrow B \text{ is not a tautology}$$

	Interesting Bits ○○●○	

Substitution Lemma

Lemma (original substitution lemma)

Assume

- \blacktriangleright Γ is provable with rules of modal rank n (i.e., Γ has rank n)
- σ is a substitution that maps to formulas of modal rank k Then $\Gamma \sigma$ is provable with rules of modal rank n + k, using the additional assumptions Ax_k , where

Ax_k
$$\stackrel{\text{def}}{=}$$
 { Γ , A , $\neg A \mid \Gamma$ and A of modal rank k}

Proof.

Take the original proof, substituting $\neg p\sigma, p\sigma, \Gamma$ from Ax_k for $- F, p, \neg p$ (Ax)

0000 0000	000	0000	0000

Wrong Substitution Lemma

Lemma (original substitution lemma)

Assume

- \blacktriangleright Γ is provable with rules of modal rank n (i.e., Γ has rank n)
- σ is a substitution that maps to formulas of modal rank k Then $\Gamma \sigma$ is provable with rules of modal rank n + k, using the additional assumptions Ax_k , where

$$Ax_k \stackrel{\text{def}}{=} \{\Gamma, A, \neg A \mid \Gamma \text{ and } A \text{ of modal rank } k\}$$

Example

- $\Gamma = \heartsuit(p), p, \neg p$ of modal rank n = 1, provable by (Ax)
- $\sigma: p \mapsto \heartsuit(p)$ of modal rank k = 1
- but Γσ = ♡(♡(p)), ♡(p), ¬♡(p) of rank n + k = 2 is not in Ax₁

	Interesting Bits	
	0000	

Substitution Lemma II

Error seems to break the main theorems

- subst. lemma is used inside induction proofs on the modal rank
- **Γ** of rank 1, σ of rank k
- reduces $\Gamma \sigma$ of rank k + 1 to Ax_k of rank k
- thus permitting the use of the induction hypothesis

Use $Ax_{\sigma}^{n+k} = \{\Gamma, p\sigma, \neg p\sigma \mid \Gamma \text{ of modal rank } n+k\}$

- \blacktriangleright "binding" of σ makes other proofs simpler
- need to use weakening before applying the induction hypothesis
- this way, original proofs remain valid

	Interesting Bits	
	0000	

Substitution Lemma II

Error seems to break the main theorems

- subst. lemma is used inside induction proofs on the modal rank
- **Γ** of rank 1, σ of rank k
- reduces $\Gamma \sigma$ of rank k + 1 to Ax_k of rank k
- thus permitting the use of the induction hypothesis

Use $Ax_{\sigma}^{n+k} = \{\Gamma, p\sigma, \neg p\sigma \mid \Gamma \text{ of modal rank } n+k\}$

- \blacktriangleright "binding" of σ makes other proofs simpler
- need to use weakening before applying the induction hypothesis
- this way, original proofs remain valid

		Conclusion

Outline

Introduction

Formalization in Coq

Selection of Major Results

Some Interesting Bits

Conclusion

Introduction	Formalization	Results	Interesting Bits	Conclusion
0000		000	0000	●000
		Conclusion		

Conclusion I

Summary

- soundness, completeness, cut-elimination results for generic multi-modal propositional logic in Coq
- ▶ modal logic K as example
- very concise formalisation of syntax, semantics, proofs relying on dependent types (without predicates for well-formedness)
- ▶ only 4 non-trivial problems revealed (+1 for coalition logic)
- the usual peer-review process does not ensure correctness

Future Work

- ▶ coalition logic (work in progress) and other example logics
- remaining content of the paper, especially interpolation theorem and interpolants
- change formalisation to extract certified tautology checkers

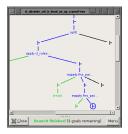
				Conclusion ○●○○				
Conclusion II								

Complexity

- ▶ 36,000 lines, 400 definitions, 1300 theorems in Coq
- \blacktriangleright for 19 propositions, 7 definitions, 3 examples on \approx 31 pages

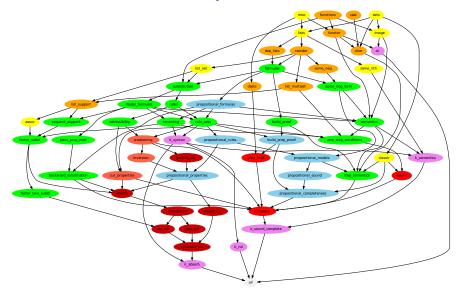
Side Effects

- parallel library compilation for Coq in Proof General
- proof tree visualisation



		Conclusion 00●0

File Dependencies



		Conclusion
		0000

Coalgebraic Modal Logics: Semantics

- a functor T describes the type of frames
- ▶ behaviour of modal operators is given by (fibred) predicate liftings: $[[\heartsuit]] : ((P_1 \subseteq X), ..., (P_n \subseteq X)) \mapsto (Q \subseteq TX)$
- ► a frame (model) is given by a coalgebra γ : X → TX together with a valuation τ : V → P(X)
- ▶ formula semantics yields a subset of the state space $\llbracket \rrbracket_{\tau}^{c} \subseteq X$:

$$\begin{split} \llbracket p \rrbracket_{\tau}^c &= \tau(p) \\ \llbracket A \land B \rrbracket_{\tau}^c &= \llbracket A \rrbracket_{\tau}^c \cap \llbracket B \rrbracket_{\tau}^c \\ \llbracket \neg A \rrbracket_{\tau}^c &= X \setminus \llbracket A \rrbracket_{\tau}^c \\ \llbracket \neg A \rrbracket_{\tau}^c &= X \setminus \llbracket A \rrbracket_{\tau}^c \\ \llbracket \heartsuit (A_1, \dots, A_n) \rrbracket_{\tau}^c &= \gamma^{-1} (\llbracket \heartsuit \rrbracket (\llbracket A_1 \rrbracket_{\tau}^c, \dots, \llbracket A_n \rrbracket_{\tau}^c)) \end{split}$$